16-bit Proprietary Microcontrollers

CMOS

F²MC-16LX MB90350E Series

MB90F351E (S) , MB90F351TE (S) , MB90F352E (S) , MB90F352TE (S) , MB90351E (S) , MB90351TE (S) , MB90352E (S), MB90352TE (S), MB90F356E (S), MB90F356TE (S), MB90F357E (S) , MB90F357TE (S) , MB90356E (S) , MB90356TE (S) , MB90357E (S) , MB90357TE(S) , MB90V340E-101/102/103/104

■ DESCRIPTION

The MB90350E series, loaded 1 channel FULL-CAN* interface and Flash ROM, is general-purpose FUJITSU 16-bit microcontroller designing for automotive and industrial applications. Its main feature is the on-board CAN interface, which conforms to CAN standard Version2.0 Part A and Part B, while supporting a very flexible message buffer scheme and so offering more functions than a normal full CAN approach. With the new $0.35 \mu \mathrm{~m}$ CMOS technology, Fujitsu now offers on-chip Flash ROM program memory up to 128 Kbytes.
The power supply (3 V) is supplied to the MCU core from an internal regulator circuit. This creates a major advantage in terms of EMI and power consumption.

The PLL clock multiplication circuit provides an internal 42 ns instruction execution time from an external 4 MHz clock. Also, the clock supervisor function can monitor main clock and sub clock independently.

As the peripheral resources, the unit features a 4-channel Output Compare Unit, 6-channel Input Capture Unit, 2 separate 16 -bit free-run timers, 2-channel UART and 15-channel 8/10-bit A/D converter built-in.

* : Controller Area Network (CAN) - License of Robert Bosch GmbH

Note : $\mathrm{F}^{2} \mathrm{MC}$ is the abbreviation of FUJITSU Flexible Microcontroller.

Be sure to refer to the "Check Sheet" for the latest cautions on development.

"Check Sheet" is seen at the following support page
URL : http://www.fujitsu.com/global/services/microelectronics/product/micom/support/index.html
"Check Sheet" lists the minimal requirement items to be checked to prevent problems beforehand in system development.

MB90350E Series

■ FEATURES

- Clock

- Built-in PLL clock frequency multiplication circuit
- Selection of machine clocks (PLL clocks) is allowed among frequency division by two on oscillation clock, and multiplication of 1 to 6 times of oscillation clock (for 4 MHz oscillation clock, 4 MHz to 24 MHz).
- Operation by sub clock (up to $50 \mathrm{kHz}: 100 \mathrm{kHz}$ oscillation clock divided by two) is allowed (devices without S-suffix only).
- Minimum execution time of instruction : 42 ns (when operating with $4-\mathrm{MHz}$ oscillation clock, and 6-time multiplied PLL clock).
- Built-in clock modulation circuit
- 16 Mbytes CPU memory space

24-bit internal addressing

- Instruction system best suited to controller
- Wide choice of data types (bit, byte, word, and long word)
- Wide choice of addressing modes (23 types)
- Enhanced multiply-divide instructions with sign and RETI instructions
- Clock supervisor (MB90x356x and MB90x357x only)
- Main clock or sub clock is monitored independently.
- Internal CR oscillation clock (100 kHz typical) can be used as sub clock.
- Enhanced high-precision computing with 32-bit accumulator
- Instruction system compatible with high-level language (C language) and multitask
- Employing system stack pointer
- Enhanced various pointer indirect instructions
- Barrel shift instructions
- Increased processing speed

4-byte instruction queue

- Powerful interrupt function
- Powerful 8-level, 34-condition interrupt feature
- Up to 8 channels external interrupts are supported.

- Automatic data transfer function independent of CPU

- Extended intelligent I/O service function (EI2OS) : up to 16 channels
- DMA : up to 16 channels
- Low power consumption (standby) mode
- Sleep mode (a mode that stops CPU operating clock)
- Main timer mode (a timebase timer mode switched from the main clock mode)
- PLL timer mode (a timebase timer mode switched from the PLL clock mode)
- Watch mode (a mode that operates sub clock and watch timer only)
- Stop mode (a mode that stops oscillation clock and sub clock)
- CPU intermittent operation mode

- Process

CMOS technology

- I/O port
- General-purpose input/output port (CMOS output)
- 49 ports (devices without S-suffix : devices that correspond to sub clock)
- 51 ports (devices with S-suffix : devices that do not correspond to sub clock)

MB90350E Series

- Sub clock pin (X0A, X1A)

- Yes (using the external oscillation) : devices without S-suffix
- No (using the sub clock mode at internal CR oscillation) : devices with S-suffix

- Timer

- Timebase timer, watch timer, watchdog timer : 1 channel
- 8/16-bit PPG timer : 8-bit $\times 10$ channels or 16 -bit $\times 6$ channels
- 16-bit reload timer : 2 channels (only Evaluation products has 4 channels)
- 16- bit input/output timer
- 16-bit free-run timer : 2 channels (FRT0 : ICU0/1, FRT1 : ICU4/5/6/7, OCU4/5/6/7)
- 16- bit input capture: (ICU) : 6 channels
- 16-bit output compare : (OCU) : 4 channels

- FULL-CAN interface : 1 channel

- Compliant with CAN standard Version2.0 Part A and Part B
- 16 message buffers are built-in
- CAN wake-up function
- UART (LIN/SCI) : $\mathbf{2}$ channels
- Equipped with full-duplex double buffer
- Clock-asynchronous or clock-synchronous serial transmission is available.
- ${ }^{2}$ C interface*1 : 1 channel

Up to 400 kbps transfer rate

- DTP/External interrupt : 8 channels, CAN wakeup : 1 channel

Module for activation of extended intelligent I/O service (EI ${ }^{2} \mathrm{OS}$), DMA, and generation of external interrupt by external input.

- Delay interrupt generator module

Generates interrupt request for task switching.

- 8/10-bit A/D converter : 15 channels
- Resolution is selectable between 8 -bit and 10-bit.
- Activation by external trigger input is allowed.
- Conversion time : $3 \mu \mathrm{~s}$ (at $24-\mathrm{MHz}$ machine clock, including sampling time)

- Program patch function

- Address matching detection for 6 address pointers.
- Capable of changing input voltage level for port
- Automotive/CMOS-Schmitt (initial level is Automotive in single chip mode)
- TTL level (corresponds to external bus pins only, initial level of these pins is TTL in external bus mode)
- Low voltage/CPU operation detection reset (devices with T-suffix)
- Detects low voltage ($4.0 \mathrm{~V} \pm 0.3 \mathrm{~V}$) and resets automatically
- Resets automatically when program is runaway and counter is not cleared within interval time (approx. 262 ms : external 4 MHz)

- Dual operation Flash memory

- Erase/write and read can be executed in the different bank (Upper Bank/Lower Bank) at the same time.
- Supported $\mathrm{T}_{\mathrm{A}}=+125{ }^{\circ} \mathrm{C}$

The maximum operating frequency is $24 \mathrm{MHz}^{* 2}$: (at $\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$).

MB90350E Series

(Continued)

- Flash security function
- Protects the content of Flash memory (MB90F352x, MB90F357x only)
- External bus interface
- 4 Mbytes external memory space MB90F351E(S), MB90F351TE(S), MB90F352E(S), MB90F352TE(S) : External bus Interface can not be used in internal vector mode. It can be used only in external vector mode.
*1: ${ }^{2} \mathrm{C}$ license :
Purchase of Fujitsu $I^{2} \mathrm{C}$ components conveys a license under the Philips $I^{2} \mathrm{C}$ Patent Rights to use, these components in an $I^{2} \mathrm{C}$ system provided that the system conforms to the $\mathrm{I}^{2} \mathrm{C}$ Standard Specification as defined by Philips.
*2 : If used exceeding $T_{A}=+105^{\circ} \mathrm{C}$, be sure to contact Fujitsu for reliability limitations.

MB90350E Series

- PRODUCT LINEUP1 (Without Clock supervisor function)

-Flash memory products

Parameter Number	MB90F351E, MB90F352E	MB90F351TE, MB90F352TE	MB90F351ES, MB90F352ES	MB90F351TES MB90F352TES
Type	Flash memory products			
CPU	F²MC-16LX CPU			
System clock	PLL clock multiplication circuit ($\times 1, \times 2, \times 3, \times 4, \times 6,1 / 2$ when PLL stops) Minimum instruction execution time : 42 ns (oscillation clock $4 \mathrm{MHz}, \mathrm{PLL} \times 6$)			
ROM	64 Kbytes Flash memory : MB90F351E(S), MB90F351TE(S) 128 Kbytes Dual operation Flash memory (Erase/write and read can be operated at the same time) : MB90F352E(S), MB90F352TE(S)			
RAM	4 Kbytes			
Emulator-specific power supply*1	-			
Sub clock pin (X0A, X1A) (Max 100 kHz)	Yes		No	
Clock supervisor	No			
Low voltage/CPU operation detection reset	No	Yes	No	Yes
Operating voltage	3.5 V to 5.5 V : at normal operating (not using A/D converter) 4.0 V to 5.5 V : at using A/D converter/Flash programming 4.5 V to 5.5 V : at using external bus			
Operating temperature	$-40{ }^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			
Package	LQFP-64			
	2 channels			
UART	Wide range of baud rate settings using a dedicated reload timer Special synchronous options for adapting to different synchronous serial protocols LIN functionality working either as master or slave LIN device			
${ }^{2} \mathrm{C}$ (400 kbps)	1 channel			
	15 channels			
A/D converter	10-bit or 8-bit resolution Conversion time : Min 3μ s includes sample time (per one channel)			
16-bit reload timer (2 channels)	Operation clock frequency : fsys/2 ${ }^{1}$, fsys $/ 2^{3}$, fsys/ 2^{5} (fsys = Machine clock frequency) Supports External Event Count function.			
	I/O Timer 0 (clock input FRCK0) corresponds to ICU0/1. I/O Timer 1 (clock input FRCK1) corresponds to ICU4/5/6/7, OCU4/5/6/7.			
16-bit I/O timer (2 channels)	Signals an interrupt when overflowing. Supports Timer Clear when it matches Output Compare (ch.0, ch.4) . Operation clock frequency : fsys, fsys $/ 2^{1}$, fsys $/ 2^{2}$, fsys $/ 2^{3}$, fsys $/ 2^{4}$, fsys $/ 2^{5}$, fsys $/ 2^{6}$, fsys $/ 2^{7}$ (fsys = Machine clock frequency)			
16-bit output compare	4 channels			
	Signals an interrupt when 16-bit I/O Timer matches with output compare registers. A pair of compare registers can be used to generate an output signal.			

MB90350E Series

(Continued)

Parameter Number	MB90F351E, MB90F352E	MB90F351TE, MB90F352TE	MB90F351ES, MB90F352ES	MB90F351TES, MB90F352TES
16-bit Input capture	6 channels			
	Retains free-run timer value by (rising edge, falling edge or rising \& falling edge), signals an interrupt.			
8/16-bit programmable pulse generator	6 channels (16-bit)/10 channels (8-bit) 8 -bit reload counters $\times 12$ 8 -bit reload registers for L pulse width $\times 12$ 8 -bit reload registers for H pulse width $\times 12$			
	Supports 8-bit and 16-bit operation modes. A pair of 8-bit reload counters can be configured as one 16-bit reload counter or as 8-bit prescaler + 8-bit reload counter. Operation clock frequency : fsys, fsys $/ 2^{1}$, fsys $/ 2^{2}$, fsys $/ 2^{3}$, fsys $/ 2^{4}$ or $128 \mu \mathrm{~s} @ f o s c=4 \mathrm{MHz}$ (fsys = Machine clock frequency, fosc = Oscillation clock frequency)			
	1 channel			
CAN interface	Compliant with CAN standard Version2.0 Part A and Part B. Automatic re-transmission in case of error Automatic transmission responding to Remote Frame 16 prioritized message buffers for data and ID Supports multiple messages. Flexible configuration of acceptance filtering : Full bit compare/Full bit mask/Two partial bit masks Supports up to 1 Mbps .			
	8 channels			
External interrupt	Can be used rising edge, falling edge, starting up by "H"/"L" level input, external interrupt, extended intelligent I/O services (EI²OS) and DMA.			
D/A converter	-			
I/O ports	Virtually all external pins can be used as general purpose I/O port. All push-pull outputs Bit-wise settable as input/output or peripheral signal Settable as CMOS schmitt trigger/ automotive inputs TTL input level settable for external bus (only for external bus pin)			
Flash memory	Supports automatic programming, Embedded Algorithm ${ }^{\text {TM }}$ *2 Write/Erase/Erase-Suspend/Resume commands A flag indicating completion of the algorithm Number of erase cycles: 10000 times Data retention time : 20 years Boot block configuration Erase can be performed on each block. Block protection with external programming voltage Flash Security Feature for protecting the content of the Flash (MB90F352E(S) and MB90F352TE(S) only)			
Corresponding evaluation name	MB90V340E-102		MB90V340E-101	

*1: It is setting of Jumper switch (TOOL VCC) when Emulator (MB2147-01) is used. Please refer to the Emulator hardware manual about details.
*2 : Embedded Algorithm is a trademark of Advanced Micro Devices Inc.

MB90350E Series

- MASK ROM products/Evaluation products

Part Number Parameter	MB90351E, MB90352E	$\begin{aligned} & \text { MB90351TE, } \\ & \text { MB90352TE } \end{aligned}$	MB90351ES, MB90352ES	MB90351TES, MB90352TES	$\begin{gathered} \text { MB90V340E- } \\ 101 \end{gathered}$	$\begin{gathered} \text { MB90V340E- } \\ 102 \end{gathered}$
Type	MASK ROM products				Evaluation products	
CPU	$\mathrm{F}^{2} \mathrm{MC}-16 \mathrm{LX} \mathrm{CPU}$					
System clock	PLL clock multiplication circuit ($\times 1, \times 2, \times 3, \times 4, \times 6,1 / 2$ when PLL stops) Minimum instruction execution time : 42 ns (oscillation clock $4 \mathrm{MHz}, \mathrm{PLL} \times 6$)					
ROM	MASK ROM 64 Kbytes : MB90351E(S), MB90351TE(S) 128 Kbytes : MB90352E(S), MB90352TE(S)				External	
RAM	4 Kbytes				30 Kbytes	
Emulator-specific power supply*	-				Yes	
Sub clock pin (X0A, X1A) (Max 100 kHz)	Yes		No		No	Yes
Clock supervisor	No					
Low voltage/CPU operation detection reset	No	Yes	No	Yes	No	
Operating voltage range	3.5 V to 5.5 V : at normal operating (not using A/D converter) 4.0 V to 5.5 V : at using A/D converter 4.5 V to 5.5 V : at using external bus				$5 \mathrm{~V} \pm 10 \%$	
Operating temperature range	$-40{ }^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$				-	
Package	LQFP-64				PGA-299	
UART	2 channels				5 channels	
	Wide range of baud rate settings using a dedicated reload timer Special synchronous options for adapting to different synchronous serial protocols LIN functionality working either as master or slave LIN device					
${ }^{2} \mathrm{C}$ (400 kbps)	1 channel				2 channels	
A/D converter	15 channels				24 channels	
	10-bit or 8-bit resolution Conversion time: Min 3μ s includes sample time (per one channel)					
16-bit reload timer	2 channels				4 channels	
	Operation clock frequency : fsys/2 2^{1}, fsys/2 2^{3}, fsys/ $/ 2^{5}$ (fsys $=$ Machine clock frequency) Supports External Event Count function.					
16-bit I/O timer (2 channels)	I/O Timer 0 (clock input FRCKO) corresponds to ICU0/1. I/O Timer 1 (clock input FRCK1) corresponds toICU4/5/6/7, OCU4/5/6/7.				I/O Timer 0 corresponds to ICU0/1/2/3, OCU0/1/2/3. I/O Timer 1 corresponds to ICU4/5/6/7, OCU4/5/6/7.	
	Signals an interrupt when overflowing. Supports Timer Clear when it matches Output Compare (ch.0, ch.4) . Operation clock frequency : fsys, fsys $/ 2^{1}$, fsys $/ 2^{2}$, fsys $/ 2^{3}$, fsys $/ 2^{4}, \mathrm{fsys} / 2^{5}, \mathrm{fsys} / 2^{6}, \mathrm{fsys} / 2^{7}$ (fsys = Machine clock frequency)					

(Continued)

MB90350E Series

(Continued)

Part Number Parameter	MB90351E, MB90352E	$\begin{aligned} & \text { MB90351TE, } \\ & \text { MB90352TE } \end{aligned}$	MB90351ES, MB90352ES	MB90351TES, MB90352TES	MB90V340E- 101	MB90V340E- 102
16-bit output compare	4 channels				8 channels	
	Signals an interrupt when 16-bit I/O Timer matches output compare registers. A pair of compare registers can be used to generate an output signal.					
16-bit input capture	6 channels				8 channels	
	Retains free-run timer value by (rising edge, falling edge, or the both edges), signals an interrupt.					
8/16-bit programmable pulse generator	6 channels (16-bit)/10 channels (8 -bit) 8 -bit reload counters $\times 12$ 8-bit reload registers for L pulse width $\times 12$ 8 -bit reload registers for H pulse width $\times 12$				8 channels (16-bit)/ 16 channels (8-bit) 8 -bit reload counters $\times 16$ 8 -bit reload registers for L pulse width $\times 16$ 8-bit reload registers for H pulse width $\times 16$	
	Supports 8-bit and 16-bit operation modes. A pair of 8-bit reload counters can be configured as one 16-bit reload counter or as 8-bit prescaler +8 -bit reload counter. Operation clock frequency : fsys, fsys $/ 2^{1}$, fsys $/ 2^{2}$, fsys $/ 2^{3}$, fsys $/ 2^{4}$ or $128 \mu \mathrm{~s} @ \mathrm{fosc}=4 \mathrm{MHz}$ (fsys = Machine clock frequency, fosc = Oscillation clock frequency)					
	1 channel				3 channels	
CAN interface	Compliant with CAN standard Version 2.0 Part A and Part B. Automatic re-transmission in case of error Automatic transmission responding to Remote Frame 16 prioritized message buffers for data and ID Supports multiple messages. Flexible configuration of acceptance filtering : Full bit compare/Full bit mask/Two partial bit masks Supports up to 1 Mbps.					
External interrupt	8 channels				16 channels	
	Can be used rising edge, falling edge, starting up by "H"/"L" level input, external interrupt, extended intelligent I/O services ($\mathrm{El}^{2} \mathrm{OS}$) and DMA.					
D/A converter	-				2 channels	
I/O ports	Virtually all external pins can be used as general purpose I/O port. All push-pull outputs Bit-wise settable as input/output or peripheral signal Settable as CMOS schmitt trigger/ automotive inputs TTL input level settable for external bus (only for external bus pin)					
Flash memory	-					
Corresponding evaluation name	MB90V340E-102		MB90V340E-101		-	

*: It is setting of Jumper switch (TOOL VCC) when Emulator (MB2147-01) is used. Please refer to the Emulator hardware manual about details.

MB90350E Series

PRODUCT LINEUP 2 (With Clock supervisor function)

- Flash memory products

Part Number Parameter	MB90F356E, MB90F357E	MB90F356TE, MB90F357TE	MB90F356ES, MB90F357ES	MB90F356TE MB90F357TE
Type	Flash memory products			
CPU	$F^{2} \mathrm{MC}-16 \mathrm{LX} \mathrm{CPU}$			
System clock	On-chip PLL clock multiplier ($\times 1, \times 2, \times 3, \times 4, \times 6,1 / 2$ when PLL stops) Minimum instruction execution time : 42 ns (oscillation clock 4 MHz, PLL $\times 6$)			
ROM	Dual operation flash memory 64 Kbytes: MB90F356E(S), MB90F356TE(S) 128 Kbytes : MB90F357E(S), MB90F357TE(S)			
RAM	4 Kbytes			
Emulator-specific power supply*1	-			
Sub clock pin (X0A, X1A)	Yes		No (internal CR oscillation can be used as sub clock)	
Clock supervisor	Yes			
Low voltage/CPU operation detection reset	No	Yes	No	Yes
Operating voltage range	3.5 V to 5.5 V : at normal operating (not using A/D converter) 3.5 V to 5.5 V : at using A/D converter/Flash programming 3.5 V to 5.5 V : at using external bus			
Operating temperature range	$-40{ }^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			
Package	LQFP-64			
	2 channels			
UART	Wide range of baud rate settings using a dedicated reload timer Special synchronous options for adapting to different synchronous serial protocols LIN functionality working either as master or slave LIN device			
$\mathrm{I}^{2} \mathrm{C}(400 \mathrm{kbps})$	1 channel			
	15 channels			
A/D Converter	10-bit or 8-bit resolution Conversion time : Min 3μ s includes sample time (per one channel)			
16-bit Reload Timer (4 channels)	Operation clock frequency : fsys/2 ${ }^{1}$, fsys $/ 2^{3}$, fsys/ $/ 2^{5}$ (fsys = Machine clock frequency) Supports External Event Count function.			
	I/O Timer 0 (clock input FRCKO) corresponds to ICU 0/1. I/O Timer 1 (clock input FRCK1) corresponds to ICU 4/5/6/7, OCU 4/5/6/7.			
16-bit I/O Timer (2 channels)	Signals an interrupt when overflowing. Supports Timer Clear when a match with Output Compare (Channel 0, 4) . Operation clock frequency : fsys, fsys $/ 2^{1}$, fsys $/ 2^{2}$, fsys $/ 2^{3}$, fsys $/ 2^{4}$, fsys $/ 2^{5}$, fsys $/ 2^{6}$, fsys $/ 2^{7}$ (fsys = Machine clock frequency)			
16-bit Output Compare	4 channels			
	Signals an interrupt when 16-bit I/O Timer matches with output compare registers. A pair of compare registers can be used to generate an output signal.			

(Continued)

MB90350E Series

(Continued)

Part Number Parameter	MB90F356E, MB90F357E	MB90F356TE, MB90F357TE	MB90F356ES, MB90F357ES	MB90F356TES MB90F357TES
16-bit Input Capture	6 channels			
	Retains free-run timer value by (rising edge, falling edge or rising \& falling edge), signals an interrupt.			
8/16-bit Programmable Pulse Generator	6 channels (16-bit)/10 channels (8-bit) 8 -bit reload counters $\times 12$ 8 -bit reload registers for L pulse width $\times 12$ 8 -bit reload registers for H pulse width $\times 12$			
	Supports 8-bit and 16-bit operation modes. A pair of 8-bit reload counters can be configured as one 16-bit reload counter or as 8 -bit prescaler +8 -bit reload counter. Operation clock frequency : fsys, fsys $/ 2^{1}$, fsys $/ 2^{2}$, fsys $/ 2^{3}$, fsys $/ 2^{4}$ or $128 \mu \mathrm{~s}$ @fosc $=4 \mathrm{MHz}$ (fsys = Machine clock frequency, fosc = Oscillation clock frequency)			
	1 channel			
CAN Interface	Conforms to CAN Specification Version 2.0 Part A and B. Automatic re-transmission in case of error Automatic transmission responding to Remote Frame Prioritized 16 message buffers for data and ID Supports multiple messages. Flexible configuration of acceptance filtering : Full bit compare/Full bit mask/Two partial bit masks Supports up to 1 Mbps.			
	8 channels			
External Interrupt	Can be used rising edge, falling edge, starting up by H/L level input, external interrupt, extended intelligent I/O services (EI²OS) and DMA.			
D/A converter	-			
I/O Ports	Virtually all external pins can be used as general purpose I/O port. All push-pull outputs Bit-wise settable as input/output or peripheral module signal Settable as CMOS schmitt trigger/ automotive inputs TTL input level settable for external bus (only for external bus pin)			
Flash Memory	Supports automatic programming, Embedded Algorithm ${ }^{\text {TM }}{ }^{* 2}$ Write/Erase/Erase-Suspend/Resume commands A flag indicating completion of the algorithm Number of erase cycles : 10000 times Data retention time : 10 years Boot block configuration Erase can be performed on each block. Block protection with external programming voltage Flash Security Feature for protecting the content of the Flash (MB90F357x only)			
Corresponding EVA name	MB90V340E-104		MB90V340E-103	

*1: It is setting of Jumper switch (TOOL VCC) when Emulator (MB2147-01) is used.
Please refer to the Emulator hardware manual about details.
*2 : Embedded Algorithm is a trademark of Advanced Micro Devices Inc.

MB90350E Series

- MASK ROM products/Evaluation products

Part Number Parameter	MB90356E, MB90357E	MB90356TE, MB90357TE	MB90356ES, MB90357ES	MB90356TES, MB90357TES	MB90V340E- 103	$\begin{gathered} \text { MB90V340E- } \\ 104 \end{gathered}$
CPU	$\mathrm{F}^{2} \mathrm{MC}-16 \mathrm{LX} \mathrm{CPU}$					
System clock	On-chip PLL clock multiplier ($\times 1, \times 2, \times 3, \times 4, \times 6,1 / 2$ when PLL stops) Minimum instruction execution time : 42 ns (oscillation clock $4 \mathrm{MHz}, \mathrm{PLL} \times 6$)					
ROM	MASK ROM 64 Kbytes :MB90356E(S), MB90356TE(S) 128 Kbytes :MB90357E(S), MB90357TE(S)				External	
RAM	4 Kbytes				30 Kbytes	
Emulator-specific power supply*	-				Yes	
Sub clock pin (X0A, X1A)	Yes		No (internal CR oscillation can be used as sub clock)		No (internal CR oscillation can be used as sub clock)	Yes
Clock supervisor	Yes					
Low voltage/CPU operation detection reset	No	Yes	No	Yes	N	
Operating voltage range	3.5 V to 5.5 V : at normal operating (not using A/D converter) 4.0 V to 5.5 V : at using A/D converter 4.5 V to 5.5 V : at using external bus				$5 \mathrm{~V} \pm 10 \%$	
Operating temperature range	$-40{ }^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$				-	
Package	LQFP-64				PGA-299	
UART	2 channels				5 channels	
	Wide range of baud rate settings using a dedicated reload timer Special synchronous options for adapting to different synchronous serial protocols LIN functionality working either as master or slave LIN device					
$1^{2} \mathrm{C}$ (400 kbps)	1 channel				2 channels	
A/D Converter	15 channels				24 channels	
	10-bit or 8-bit resolution Conversion time : Min 3μ s includes sample time (per one channel)					
16-bit Reload Timer (4 channels)	Operation clock frequency : fsys/2 2^{1}, fsys $/ 2^{3}$, fsys/ $/ 2^{5}$ (fsys $=$ Machine clock frequency) Supports External Event Count function.					
16-bit I/O Timer (2 channels)	I/O Timer 0 (clock input FRCKO) corresponds to ICU 0/1. I/O Timer 1 (clock input FRCK1) corresponds toICU 4/5/6/7, OCU 4/5/6/7.				I/O Timer 0 corresponds to ICU 0/1/2/3, OCU 0/1/2/3. I/O Timer 1 corresponds to ICU 4/5/6/7, OCU 4/5/6/7.	
	Signals an interrupt when overflowing. Supports Timer Clear when a match with Output Compare (Channel 0,4) . Operation clock frequency : fsys, fsys $/ 2^{1}$, fsys $/ 2^{2}$, fsys $/ 2^{3}$, $\mathrm{fsys} / 2^{4}$, fsys $/ 2^{5}$, fsys $/ 2^{6}$, fsys $/ 2^{7}$ (fsys = Machine clock frequency)					

(Continued)

MB90350E Series

(Continued)

Part Number Parameter	MB90356E, MB90357E	$\begin{aligned} & \text { MB90356TE, } \\ & \text { MB90357TE } \end{aligned}$	MB90356ES, MB90357ES	MB90356TES, MB90357TES	$\begin{gathered} \text { MB90V340E- } \\ 103 \end{gathered}$	$\begin{gathered} \text { MB90V340E- } \\ 104 \end{gathered}$
16-bit Output Compare	4 channels				8 channels	
	Signals an interrupt when 16-bit I/O Timer matches with output compare registers. A pair of compare registers can be used to generate an output signal.					
16-bit Input Capture	6 channels				8 channels	
	Retains free-run timer value by (rising edge, falling edge or rising \& falling edge), signals an interrupt.					
8/16-bit Programmable Pulse Generator	6 channels (16-bit)/10 channels (8 -bit) 8 -bit reload counters $\times 12$ 8 -bit reload registers for L pulse width $\times 12$ 8 -bit reload registers for H pulse width $\times 12$				8 channels (16-bit)/ 16 channels (8-bit) 8 -bit reload counters $\times 16$ 8 -bit reload registers for L pulse width $\times 16$ 8 -bit reload registers for H pulse width $\times 16$	
	Supports 8-bit and 16-bit operation modes. A pair of 8-bit reload counters can be configured as one 16-bit reload counter or as 8-bit prescaler +8 -bit reload counter. Operation clock frequency : fsys, fsys $/ 2^{1}$, fsys $/ 2^{2}$, fsys $/ 2^{3}$, fsys $/ 2^{4}$ or $128 \mu \mathrm{~s} @ \mathrm{fosc}=4 \mathrm{MHz}$ (fsys = Machine clock frequency, fosc = Oscillation clock frequency)					
	1 channel				3 channels	
CAN Interface	Conforms to CAN Specification Version 2.0 Part A and B. Automatic re-transmission in case of error Automatic transmission responding to Remote Frame Prioritized 16 message buffers for data and ID Supports multiple messages. Flexible configuration of acceptance filtering : Full bit compare/Full bit mask/Two partial bit masks Supports up to 1 Mbps .					
External Interrupt	8 channels				16 channels	
	Can be used rising edge, falling edge, starting up by H/L level input, external interrupt, extended intelligent I/O services (EI²OS) and DMA.					
D/A converter	-				2 channels	
I/O Ports	Virtually all external pins can be used as general purpose I/O port. All push-pull outputs Bit-wise settable as input/output or peripheral module signal Settable as CMOS schmitt trigger/ automotive inputs TTL input level settable for external bus (only for external bus pin)					
Flash Memory	-					
Corresponding EVA name	MB90V340E-104		MB90V340E-103		-	

*: It is setting of Jumper switch (TOOL VCC) when Emulator (MB2147-01) is used.
Please refer to the Emulator hardware manual about details.

MB90350E Series

- PACKAGES AND PRODUCT CORRESPONDENCE

Package	MB90V340E-101, MB90V340E-102, MB90V340E-103, MB90V340E-104	MB90F351E (S) , MB90F351TE (S) MB90F352E (S) , MB90F352TE (S) MB90F356E (S) , MB90F356TE (S) MB90F357E (S) , MB90F357TE (S) MB90351E (S), MB90351TE (S) MB90352E (S) , MB90352TE (S) MB90356E (S) , MB90356TE (S) MB90357E (S) , MB90357TE (S)
PGA-299C-A01	\bigcirc	\times
FPT-64P-M23 ($12.0 \mathrm{~mm} \square, 0.65 \mathrm{~mm}$ pitch)	\times	\bigcirc
FPT-64P-M24 ($10.0 \mathrm{~mm} \square, 0.50 \mathrm{~mm}$ pitch)	\times	\bigcirc

\bigcirc : Yes, \times : No

Note : Refer to "■ PACKAGE DIMENSIONS" for detail of each package.

MB90350E Series

■ PIN ASSIGNMENTS

- MB90F351E(S), MB90F351TE(S), MB90F352E(S), MB90F352TE(S),MB90F356E(S), MB90F356TE(S), MB90F357E(S), MB90F357TE(S), MB90351E(S), MB90351TE(S), MB90352E(S), MB90352TE(S), MB90356E(S), MB90356TE(S), MB90357E(S), MB90357TE(S)

(FPT-64P-M23, FPT-64P-M24)
* : Devices without S-suffix : X0A, X1A

Devices with S-suffix : P40, P41

MB90350E Series

- PIN DESCRIPTION

Pin No.	Pin name	I/O Circuit type*	Function
46	X1	A	Oscillation output pin
47	X0		Oscillation input pin
45	$\overline{\mathrm{RST}}$	E	Reset input pin
3 to 8	P62 to P67	I	General purpose I/O ports
	AN2 to AN7		Analog input pins for A/D converter
	$\begin{gathered} \hline \text { PPG4 (5) , } 6(7), \\ 8(9), A(B), \\ C(D), E(F) \\ \hline \end{gathered}$		Output pins for PPGs
9	P50	0	General purpose I/O port
	AN8		Analog input pin for A/D converter
	SIN2		Serial data input pin for UART2
10	P51	I	General purpose I/O port
	AN9		Analog input pin for A/D converter
	SOT2		Serial data output pin for UART2
11	P52	I	General purpose I/O port
	AN10		Analog input pin for A/D converter
	SCK2		Serial clock I/O pin for UART2
12	P53	I	General purpose I/O port
	AN11		Analog input pin for A/D converter
	TIN3		Event input pin for reload timer3
13	P54	I	General purpose I/O port
	AN12		Analog input pin for A/D converter
	TOT3		Output pin for reload timer3
14, 15	P55, P56	I	General purpose I/O ports
	AN13, AN14		Analog input pins for A/D converter
16	P42	F	General purpose I/O port
	IN6		Data sample input pin for input capture ICU6
	RX1		RX input pin for CAN1
	INT9R		External interrupt request input pin for INT9
17	P43	F	General purpose I/O port
	IN7		Data sample input pin for input capture ICU7
	TX1		TX output pin for CAN1
19, 20	P40, P41	F	General purpose I/O ports (devices with S-suffix and MB90V340E-101/103)
	X0A, X1A	B	XOA : Oscillation input pins for sub clock X1A : Oscillation output pins for sub clock (devices without S-suffix and MB90V340E-102/104)

(Continued)

MB90350E Series

Pin No.	Pin name	I/O Circuit type*	Function
24 to 31	P00 to P07	G	General purpose I/O ports. The register can be set to select whether to use a pull-up resistor. This function is enabled in single-chip mode.
	AD00 to AD07		Input/output pins of external address data bus lower 8 bits. This function is enabled when the external bus is enabled.
	INT8 to INT15		External interrupt request input pins for INT8 to INT15
32	P10	G	General purpose I/O port. The register can be set to select whether to use a pull-up resistor. This function is enabled in single-chip mode.
	AD08		Input/output pin for external bus address data bus bit 8 . This function is enabled when external bus is enabled.
	TIN1		Event input pin for reload timer1
33	P11	G	General purpose I/O port. The register can be set to select whether to use a pull-up resistor. This function is enabled in single-chip mode.
	AD09		Input/output pin for external bus address data bus bit 9 . This function is enabled when external bus is enabled.
	TOT1		Output pin for reload timer1
34	P12	N	General purpose I/O port. The register can be set to select whether to use a pull-up resistor. This function is enabled in single-chip mode.
	AD10		Input/output pin for external bus address data bus bit 10. This function is enabled when external bus is enabled.
	SIN3		Serial data input pin for UART3
	INT11R		External interrupt request input pin for INT11
35	P13	G	General purpose I/O port. The register can be set to select whether to use a pull-up resistor. This function is enabled in single-chip mode.
	AD11		Input/output pin for external bus address data bus bit 11. This function is enabled when external bus is enabled.
	SOT3		Serial data output pin for UART3
36	P14	G	General purpose I/O port. The register can be set to select whether to use a pull-up resistor. This function is enabled in single-chip mode.
	AD12		Input/output pin for external bus address data bus bit 12. This function is enabled when external bus is enabled.
	SCK3		Clock input/output pin for UART3
37	P15	N	General purpose I/O port. The register can be set to select whether to use a pull-up resistor. This function is enabled in single-chip mode.
	AD13		Input/output pin for external bus address data bus bit 13. This function is enabled when external bus is enabled.
38	P16	G	General purpose I/O port. The register can be set to select whether to use a pull-up resistor. This function is enabled in single-chip mode.
	AD14		Input/output pin for external bus address data bus bit 14. This function is enabled when external bus is enabled.

(Continued)

MB90350E Series

Pin No.	Pin name	I/O Circuit type*	Function
39	P17	G	General purpose I/O port. The register can be set to select whether to use a pull-up resistor. This function is enabled in single-chip mode.
	AD15		Input/output pin for external bus address data bus bit 15. This function is enabled when external bus is enabled.
40 to 43	P20 to P23	G	General purpose I/O ports. The register can be set to select whether to use a pull-up resistor. In external bus mode, the pins are enabled as a generalpurpose I/O port when the corresponding bit in the external address output control register (HACR) is 1 .
	A16 to A19		Output pins for A16 to A19 of the external address data bus. When the corresponding bit in the external address output control register (HACR) is 0 , the pins are enabled as high address output pins A16 to A19.
	$\begin{aligned} & \hline \text { PPG9 (8), } \\ & \text { PPGB (A), } \\ & \text { PPGD (C), } \\ & \text { PPGF (E) } \end{aligned}$		Output pins for PPGs
44	P24	G	General purpose I/O port. The register can be set to select whether to use a pull-up resistor. In external bus mode, the pin is enabled as a generalpurpose I/O port when the corresponding bit in the external address output control register (HACR) is 1 .
	A20		Output pin for A20 of the external address data bus. When the corresponding bit in the external address output control register (HACR) is 0 , the pin is enabled as high address output pin A20.
	INO		Data sample input pin for input capture ICU0
51	P25	G	General purpose I/O port. The register can be set to select whether to use a pull-up resistor. In external bus mode, the pin is enabled as a generalpurpose I/O port when the corresponding bit in the external address output control register (HACR) is 1 .
	A21		Output pin for A21 of the external address data bus. When the corresponding bit in the external address output control register (HACR) is 0 , the pin is enabled as high address output pin A21.
	IN1		Data sample input pin for input capture ICU1
	ADTG		Trigger input pin for A/D converter
52	P44	H	General purpose I/O port
	SDA0		Serial data I/O pin for ${ }^{2} \mathrm{C} 0$
	FRCK0		Input pin for the 16-bit I/O Timer 0
53	P45	H	General purpose I/O port
	SCL0		Serial clock I/O pin for ${ }^{2} \mathrm{C} 0$
	FRCK1		Input pin for the 16-bit I/O Timer 1

(Continued)

MB90350E Series

Pin No.	Pin name	$\begin{aligned} & \text { I/O } \\ & \begin{array}{l} \text { Circuit } \\ \text { type } \end{array} \\ & \hline \end{aligned}$	Function
54	P30	G	General purpose I/O port. The register can be set to select whether to use a pull-up resistor. This function is enabled in single-chip mode.
	ALE		Address latch enable output pin. This function is enabled when external bus is enabled.
	IN4		Data sample input pin for input capture ICU4
55	P31	G	General purpose I/O port. The register can be set to select whether to use a pull-up resistor. This function is enabled in single-chip mode.
	$\overline{\mathrm{RD}}$		Read strobe output pin for data bus. This function is enabled when external bus is enabled.
	IN5		Data sample input pin for input capture ICU5
56	P32	G	General purpose I/O port. The register can be set to select whether to use a pull-up resistor. This function is enabled either in single-chip mode or with the WR/WRL pin output disabled.
	WR/WRL		Write strobe output pin for the data bus. This function is enabled when both the external bus and the $\overline{W R} / \overline{W R L}$ pin output are enabled. WRL is used to write-strobe 8 lower bits of the data bus in 16 -bit access. WR is used to write-strobe 8 bits of the data bus in 8 -bit access.
	INT10R		External interrupt request input pin for INT10
57	P33	G	General purpose I/O port. The register can be set to select whether to use a pull-up resistor. This function is enabled either in single-chip mode, in external bus 8 -bit mode or with the WRH pin output disabled.
	$\overline{\text { WRH }}$		Write strobe output pin for the 8 higher bits of the data bus. This function is enabled when the external bus is enabled, when the external bus 16 -bit mode is selected, and when the WRH output pin is enabled.
58	P34	G	General purpose I/O port. The register can be set to select whether to use a pull-up resistor. This function is enabled either in single-chip mode or with the hold function disabled.
	HRQ		Hold request input pin. This function is enabled when both the external bus and the hold function are enabled.
	OUT4		Wave form output pin for output compare OCU4
59	P35	G	General purpose I/O port. The register can be set to select whether to use a pull-up resistor. This function is enabled either in single-chip mode or with the hold function disabled.
	HAK		Hold acknowledge output pin. This function is enabled when both the external bus and the hold function are enabled.
	OUT5		Wave form output pin for output compare OCU5
60	P36	G	General purpose I/O port. The register can be set to select whether to use a pull-up resistor. This function is enabled either in single-chip mode or with the external ready function disabled.
	RDY		Ready input pin. This function is enabled when both the external bus and the external ready function are enabled.
	OUT6		Wave form output pin for output compare OCU6

(Continued)

MB90350E Series

(Continued)

Pin No.	Pin name	I/O Circuit type*	Function
61	P37	G	General purpose I/O port. The register can be set to select whether to use a pull-up resistor. This function is enabled either in single-chip mode or with the CLK output disabled.
	CLK		CLK output pin. This function is enabled when both the external bus and CLK output are enabled.
	OUT7		Wave form output pin for output compare OCU7
62,63	P60, P61	1	General purpose I/O ports
	ANO, AN1		Analog input pins for A/D converter
64	AVcc	K	V cc power input pin for analog circuits
2	AVRH	L	Reference voltage input for the A/D converter. This power supply must be turned on or off while a voltage higher than or equal to AVRH is applied to AV cc.
1	AVss	K	Vss power input pin for analog circuits
22, 23	MD1, MD0	C	Input pins for specifying the operating mode
21	MD2	D	Input pin for specifying the operating mode
49	Vcc	-	Power (3.5 V to 5.5 V) input pin
18, 48	Vss	-	Power (0 V) input pins
50	C	K	This is the power supply stabilization capacitor pin. It should be connected to a higher than or equal to $0.1 \mu \mathrm{~F}$ ceramic capacitor.

[^0]
MB90350E Series

I/O CIRCUIT TYPE

Type	Circuit	Remarks
A		Oscillation circuit High-speed oscillation feedback resistor = approx. $1 \mathrm{M} \Omega$
B		```Oscillation circuit Low-speed oscillation feedback resistor = approx. 10 M \Omega```
C		- MASK ROM device CMOS hysteresis input pin - Flash memory device CMOS input pin
D		- MASK ROM device CMOS hysteresis input pin Pull-down resistor value: approx. $50 \mathrm{k} \Omega$ - Flash memory device CMOS input pin No Pull-down
E		CMOS hysteresis input pin Pull-up resistor value: approx. $50 \mathrm{k} \Omega$

(Continued)

MB90350E Series

Type	Circuit	Remarks
F		- CMOS level output $(\mathrm{loL}=4 \mathrm{~mA}, \mathrm{Ioн}=-4 \mathrm{~mA})$ - CMOS hysteresis inputs (With input shutdown function when is standby) - Automotive input (With the standby-time input shutdown function)
G		- CMOS level output $(\mathrm{loL}=4 \mathrm{~mA}, \mathrm{IO}=-4 \mathrm{~mA})$ - CMOS hysteresis inputs (With the stand-by-time input shutdown function) - Automotive input (With the standby-time input shutdown function) - TTL input (With the standby-time input shutdown function) - Programmable pull-up resistor: approx. $50 \mathrm{k} \Omega$
H		- CMOS level output $(\mathrm{loL}=3 \mathrm{~mA}, \mathrm{IO}=-3 \mathrm{~mA})$ - CMOS hysteresis inputs (With the stand-by-time input shutdown function) - Automotive input (With the standby-time input shutdown function)

(Continued)

MB90350E Series

Type	Circuit	Remarks
I		- CMOS level output $(\mathrm{loL}=4 \mathrm{~mA}, \mathrm{Iон}=-4 \mathrm{~mA})$ - CMOS hysteresis inputs (With the stand-by-time input shutdown function) - Automotive input (With the standby-time input shutdown function) - Analog input for A / D converter
K		Protection circuit for power supply input
L		- With the protection circuit of A/D converter reference voltage power input pin - Flash memory devices do not have a protection circuit against V_{cc} for pin AVRH.

(Continued)

MB90350E Series

(Continued)

Type	Circuit	Remarks
N		- CMOS level output $(\mathrm{loL}=4 \mathrm{~mA}, \mathrm{l} \text { он }=-4 \mathrm{~mA})$ - CMOS inputs (With the standby-time input shutdown function) - Automotive input (With the standby-time input shutdown function) - TTL input (With the standby-time input shutdown function) - Programmable pull-up resistor: approx. $50 \mathrm{k} \Omega$
0		- CMOS level output $(\mathrm{loL}=4 \mathrm{~mA}, \mathrm{loн}=-4 \mathrm{~mA})$ - CMOS inputs (With the standby-time input shutdown function) - Automotive input (With the standby-time input shutdown function) - Analog input for A/D converter

MB90350E Series

HANDLING DEVICES

1. Preventing latch-up

CMOS IC chips may suffer latch-up under the following conditions:

- A voltage higher than V cc or lower than V ss is applied to an input or output pin.
- A voltage higher than the rated voltage is applied between Vcc and Vss pins.
- The AV cc power supply is applied before the Vcc voltage.

Latch-up may increase the power supply current drastically, causing thermal damage to the device.
For the same reason, also be careful not to let the analog power-supply voltage ($\mathrm{AVcc}, \mathrm{AVRH}$) exceed the digital power-supply voltage ($\mathrm{V} c \mathrm{c}$) .
2. Treatment of unused pins

Leaving unused input pins open may result in misbehavior or latch up and possible permanent damage of the device. Therefore they must be pulled up or pulled down through resistors. In this case those resistors should be more than $2 \mathrm{k} \Omega$.
Unused I/O pins should be set to the output state and can be left open, or the input state with the above described connection.
3. Using external clock

To use external clock, drive the X0 pin and leave X 1 pin open.

4. Precautions for when not using a sub clock signal

X0A and X1A are oscillation pins for sub clock. If you do not connect pins X0A and X1A to an oscillator, use pull-down handling on the X0A pin, and leave the X1A pin open.

5. Notes on during operation of PLL clock mode

On this microcontroller, if in case the crystal oscillator breaks off or an external reference clock input stops while the PLL clock mode is selected, a self-oscillator circuit contained in the PLL may continue its operation at its self-running frequency. However, Fujitsu will not guarantee results of operations if such failure occurs.

MB90350E Series

6. Treatment of Power Supply Pins (Vcc/Vss)

- If there are multiple V_{cc} and $\mathrm{V} s \mathrm{p}$ pins, from the point of view of device design, pins to be of the same potential are connected inside of the device to prevent malfunction such as latch-up.
To reduce unnecessary radiation, prevent malfunctioning of the strobe signal due to the rise of ground level, and observe the standard for total output current, be sure to connect the V_{cc} and V ss pins to the power supply and ground externally.
Connect Vcc and Vss pins to the device from the current supply source at a possibly low impedance.
- As a measure against power supply noise, it is recommended to connect a capacitor of about $0.1 \mu \mathrm{~F}$ as a bypass capacitor between V_{cc} and V ss pins in the vicinity of V cc and V ss pins of the device.

7. Pull-up/down resistors

The MB90350E series does not support internal pull-up/down resistors (Port 0 to Port 3: built-in pull-up resistors). Use external components where needed.
8. Crystal oscillator circuit

Noise around the $\mathrm{X} 0 / \mathrm{X} 1$, or $\mathrm{X} 0 \mathrm{~A} / \mathrm{X} 1 \mathrm{~A}$ pins may cause this device to operate abnormally. In the interest of stable operation it is strongly recommended that printed circuit artwork places ground bypass capacitors as close as possible to the $\mathrm{X} 0 / \mathrm{X} 1, \mathrm{X} 0 \mathrm{~A} / \mathrm{X} 1 \mathrm{~A}$ and crystal oscillator (or ceramic oscillator) and that oscillator lines do not cross the lines of other circuits.

Please ask each crystal maker to evaluate the oscillational characteristics of the crystal and this device.
9. Turning-on sequence of power supply to A/D converter and analog inputs

Make sure to turn on the A/D converter power supply (AVcc, AVRH) and analog inputs (AN0 to AN14) after turning-on the digital power supply ($\mathrm{V} c \mathrm{c}$) . Turn-off the digital power after turning off the A/D converter power supply and analog inputs. In this case, make sure that the voltage does not exceed AVRH or AVcc (turning on/ off the analog and digital power supplies simultaneously is acceptable).

10. Connection of unused pins of A / D converter if A / D converter is not used

Connect unused pins of A / D converter to $A V c c=V c c, A V s s=A V R H=V s s$.

11. Notes on energization

To prevent the internal regulator circuit from malfunctioning, set the voltage rise time during energization at $50 \mu \mathrm{~s}$ or more (0.2 V to 2.7 V) .

MB90350E Series

12. Stabilization of power supply voltage

A sudden change in the power supply voltage may cause the device to malfunction even within the specified power supply voltage V_{cc} operating range. Therefore, the power supply voltage Vcc should be stabilized.

For reference, the power supply voltage should be controlled so that Vcc ripple variations (peak-to-peak value) at commercial frequencies ($50 \mathrm{~Hz} / 60 \mathrm{~Hz}$) fall below 10% of the standard power supply voltage Vcc and the coefficient of fluctuation does not exceed $0.1 \mathrm{~V} / \mathrm{ms}$ at instantaneous power switching.

13. Initialization

In the device, there are internal registers which are initialized only by a power-on reset. To initialize these registers, turn on the power again.

14. Port 0 to port 3 output during power-on (External-bus mode)

As shown below, when power is turned on in external-bus mode, there is a possibility that output signal of Port 0 to Port 3 might be unstable regardless of reset inputs.

15. Setting using CAN function

To use CAN function, please set "1" to DIRECT bit of CAN direct mode register (CDMR).
If DIRECT bit is set to " 0 " (initial value), wait states will be performed when accessing CAN registers.
Note : Please refer to section "23.12 CAN Direct Mode Register" in Hardware Manual of MB90350E series for detail of CAN direct mode register.

16. Flash security function

The security byte is located in the area of the Flash memory. If protection code 01 н is written in the security byte, the Flash memory is in the protected state by security.
Therefore please do not write 01н in this address if you do not use the security function.
Please refer to following table for the address of the security byte.

Product name	Flash memory size	Address for security bit
MB90F352E(S)	Embedded 1 Mbit Flash memory	
MB90F352TE(S)		FE0001H
MB90F357E(S)		
MB90F357TE(S)		

17. Operation with $\mathrm{T}_{\mathrm{A}}=+10 \mathrm{a}^{\circ} \mathrm{C}$ or more

If used exceeding $T_{A}=+105^{\circ} \mathrm{C}$, please contact Fujitsu sales representatives for reliability limitations.

MB90350E Series

18. Low voltage/CPU operation reset circuit

The low voltage detection reset circuit is a function that monitors power supply voltage in order to detect when a voltage drops below a given voltage level. When a low voltage condition is detected, an internal reset signal is generated.
The CPU operation detection reset circuit is a 20 -bit counter that uses oscillation as a count clock and generates an internal reset signal if not cleared within a given time after startup.
(1) Low voltage detection reset circuit

Detection voltage
$4.0 \mathrm{~V} \pm 0.3 \mathrm{~V}$

When a low voltage condition is detected, the low voltage detection flag (LVRC : LVRF) is set to " 1 " and an internal reset signal is output.
Because the low voltage detection reset circuit continues to operate even in stop mode, detection of a low voltage condition generates an internal reset and releases stop mode.
During an internal RAM write cycle, low voltage reset is generated after the completion of writing. During the output of this internal reset, the reset output from the low voltage detection reset circuit is suppressed.
(2) CPU operation detection reset circuit

The CPU operation detection reset circuit is a counter that prevents program runaway. The counter starts automatically after a power-on reset, and must be continually and regularly cleared within a given time. If the given time interval elapses and the counter has not been cleared, a cause such as infinite program looping is assumed and an internal reset signal is generated. The internal reset generated from the CPU operation detection circuit has a width of 5 machine cycles.

Interval time
$2^{20 / F c}$ (approx. $262 \mathrm{~ms}^{*}$)

*: This value assumes the interval time at an oscillation clock frequency of 4 MHz .
During recovery from standby mode, the detection period is the maximum interval plus $20 \mu \mathrm{~s}$.
This circuit does not operate in modes where CPU operation is stopped.
The CPU operation detection reset circuit counter is cleared under any of the following conditions.

- " 0 " writing to CL bit of LVRC register
- Internal reset
- Main oscillation clock stop
- Transit to sleep mode
- Transit to timebase timer mode and watch mode

19. Internal CR oscillation circuit

Parameter	Symbol	Value			Unit
		Min	Typ	Max	
Oscillation frequency	f_{RC}	50	100	200	kHz
Oscillation stabilization wait time	tstab	-	-	100	$\mu \mathrm{~s}$

MB90350E Series

■ BLOCK DIAGRAMS

- MB90V340E-101/102

MB90350E Series

- MB90V340E-103/104

MB90350E Series

- MB90F352E (S) , MB90F352TE (S) , MB90F351E (S) , MB90F351TE (S) , MB90352E (S) , MB90352TE (S) , MB90351E (S) , MB90351TE (S)

*1 : Only for devices without "S"-suffix
*2 : Only for devices with "T"-suffix

MB90350E Series

- MB90F357E (S) , MB90F357TE (S) , MB90F356E (S) , MB90F356TE (S) , MB90357E (S) , MB90357TE (S) , MB90356E (S) , MB90356TE (S)

MB90350E Series

MEMORY MAP

Note : The high-order portion of bank 00 gives the image of the FF bank ROM to make the small model of the C compiler effective. Since the low-order 16 bits are the same, the table in ROM can be referenced without using the far specification in the pointer declaration.
For example, an attempt to access 00 COOO н practically accesses the value at FFCOOOH in ROM . The ROM area in bank FF exceeds 32 Kbytes, and its entire image cannot be shown in bank 00. The image between FF8000н and FFFFFFн is visible in bank 00, while the image between FF0000н and FF7FFFH is visible only in bank FF.

MB90350E Series

I/O MAP

Address	Register	Abbreviation	Access	Resource name	Initial value
000000н	Port 0 Data Register	PDR0	R/W	Port 0	XXXXXXXXв
000001н	Port 1 Data Register	PDR1	R/W	Port 1	XXXXXXXX
000002н	Port 2 Data Register	PDR2	R/W	Port 2	XXXXXXXXв
000003н	Port 3 Data Register	PDR3	R/W	Port 3	
000004н	Port 4 Data Register	PDR4	R/W	Port 4	X $\times X X X X X X \chi^{\text {¢ }}$
000005н	Port 5 Data Register	PDR5	R/W	Port 5	XXXXXXXX
000006н	Port 6 Data Register	PDR6	R/W	Port 6	XXXXXXXX
$\begin{aligned} & 000007 \mathrm{H} \\ & \text { to } \\ & 00000 \mathrm{~A}_{\mathrm{H}} \end{aligned}$	Reserved				
00000Вн	Port 5 Analog Input Enable Register	ADER5	R/W	Port 5, A/D	11111111 ${ }_{\text {B }}$
00000С ${ }_{\text {H }}$	Port 6 Analog Input Enable Register	ADER6	R/W	Port 6, A/D	11111111B
00000D	Reserved				
00000Ен	Input Level Select Register 0	ILSR0	R/W	Ports	00000000в
00000FH	Input Level Select Register 1	ILSR1	R/W	Ports	00000000в
000010н	Port 0 Direction Register	DDR0	R/W	Port 0	00000000в
000011н	Port 1 Direction Register	DDR1	R/W	Port 1	00000000в
000012н	Port 2 Direction Register	DDR2	R/W	Port 2	XX000000в
000013н	Port 3 Direction Register	DDR3	R/W	Port 3	00000000в
000014н	Port 4 Direction Register	DDR4	R/W	Port 4	ХХ000000в
000015	Port 5 Direction Register	DDR5	R/W	Port 5	Х0000000в
000016н	Port 6 Direction Register	DDR6	R/W	Port 6	00000000в
$\begin{aligned} & 000017 \mathrm{H} \\ & \text { to } \\ & 000019 \mathrm{H} \end{aligned}$	Reserved				
00001Ан	SIN input Level Setting Register	DDRA	W	UART2, UART3	X00XXXXX ${ }_{\text {B }}$
00001Вн	Reserved				
00001С ${ }_{\text {H }}$	Port 0 Pull-up Control Register	PUCR0	R/W	Port 0	00000000в
00001D	Port 1 Pull-up Control Register	PUCR1	R/W	Port 1	00000000в
00001Eн	Port 2 Pull-up Control Register	PUCR2	R/W	Port 2	00000000в
00001FH	Port 3 Pull-up Control Register	PUCR3	R/W	Port 3	00000000в
$\begin{gathered} \hline 000020 \mathrm{H} \\ \text { to } \\ 000037 \mathrm{H} \\ \hline \end{gathered}$	Reserved				

(Continued)

MB90350E Series

Address	Register	Abbreviation	Access	Resource name	Initial value
000038 ${ }^{\text {H }}$	PPG 4 Operation Mode Control Register	PPGC4	W, R/W	16-bit Programmable Pulse Generator 4/5	0X000XX1в
000039н	PPG 5 Operation Mode Control Register	PPGC5	W, R/W		0X000001в
00003Ан	PPG 4/5 Count Clock Select Register	PPG45	R/W		000000X0в
00003Вн	Address Detect Control Register 1	PACSR1	R/W	Address Match Detection 1	00000000в
00003CH	PPG 6 Operation Mode Control Register	PPGC6	W, R/W	16-bit Programmable Pulse Generator 6/7	0X000XX1в
00003D	PPG 7 Operation Mode Control Register	PPGC7	W, R/W		0X000001в
00003Ен	PPG 6/7 Count Clock Select Register	PPG67	R/W		000000X0в
00003Fн	Reserved				
000040н	PPG 8 Operation Mode Control Register	PPGC8	W, R/W	16-bit Programmable Pulse Generator 8/9	0X000XX1в
000041н	PPG 9 Operation Mode Control Register	PPGC9	W, R/W		0X000001в
000042н	PPG 8/9 Count Clock Select Register	PPG89	R/W		000000X0в
000043н	Reserved				
000044н	PPG A Operation Mode Control Register	PPGCA	W, R/W	16-bit Programmable Pulse Generator A/B	0X000XX1в
000045н	PPG B Operation Mode Control Register	PPGCB	W, R/W		0X000001в
000046н	PPG A/B Count Clock Select Register	PPGAB	R/W		000000X0в
000047н	Reserved				
000048н	PPG C Operation Mode Control Register	PPGCC	W,R/W	16-bit Programmable Pulse Generator C/D	0X000XX1в
000049н	PPG D Operation Mode Control Register	PPGCD	W,R/W		0X000001в
00004Ан	PPG C/D Count Clock Select Register	PPGCD	R/W		000000X0в
00004Вн	Reserved				
00004Сн	PPG E Operation Mode Control Register	PPGCE	W,R/W	16-bit Programmable Pulse Generator E/F	0X000XX1в
00004Dн	PPG F Operation Mode Control Register	PPGCF	W,R/W		0X000001в
00004Ен	PPG E/F Count Clock Select Register	PPGEF	R/W		000000X0в
00004FH	Reserved				
000050н	Input Capture Control Status Register 0/1	ICS01	R/W	Input Capture 0/1	00000000в
000051н	Input Capture Edge Register 0/1	ICE01	R/W, R		ХХХОХОХХв
$\left\lvert\, \begin{aligned} & 000052 \mathrm{H}, \\ & 000053 \mathrm{H} \end{aligned}\right.$	Reserved				
000054н	Input Capture Control Status Register 4/5	ICS45	R/W	Input Capture 4/5	00000000в
000055 ${ }^{\text {H }}$	Input Capture Edge Register 4/5	ICE45	R		XXXXXXXX
000056н	Input Capture Control Status Register 6/7	ICS67	R/W	Input Capture 6/7	00000000в
000057\%	Input Capture Edge Register 6/7	ICE67	R/W, R		XXX000XX ${ }_{\text {в }}$

(Continued)

MB90350E Series

Address	Register	Abbreviation	Access	Resource name	Initial value
$\begin{aligned} & 000058 \mathrm{H} \\ & \text { to } \\ & 00005 \text { В } \end{aligned}$	Reserved				
00005Сн	Output Compare Control Status Register 4	OCS4	R/W	Output Compare 4/5	0000XX00в
00005D	Output Compare Control Status Register 5	OCS5	R/W		OXX00000в
00005Ен	Output Compare Control Status Register 6	OCS6	R/W	Output Compare 6/7	0000XX00в
00005Fн	Output Compare Control Status Register 7	OCS7	R/W		OXX00000в
000060н	Timer Control Status Register 0	TMCSR0	R/W	16-bit Reload Timer 0	00000000в
000061н	Timer Control Status Register 0	TMCSR0	R/W		XXXX0000в
000062н	Timer Control Status Register 1	TMCSR1	R/W	16-bit Reload Timer 1	00000000в
000063н	Timer Control Status Register 1	TMCSR1	R/W		XXXX0000в
000064н	Timer Control Status Register 2	TMCSR2	R/W	16-bit Reload Timer 2	00000000в
000065н	Timer Control Status Register 2	TMCSR2	R/W		XXXX0000в
000066н	Timer Control Status Register 3	TMCSR3	R/W	16-bit Reload Timer 3	00000000в
000067	Timer Control Status Register 3	TMCSR3	R/W		ХХХХ0000в
000068н	A/D Control Status Register 0	ADCS0	R/W	A/D Converter	000XXXX0в
000069н	A/D Control Status Register 1	ADCS1	R/W		0000000Хв
00006Ан	A/D Data Register 0	ADCR0	R		00000000в
00006Вн	A/D Data Register 1	ADCR1	R		XXXXXX00в
00006Сн	ADC Setting Register 0	ADSR0	R/W		00000000в
00006D	ADC Setting Register 1	ADSR1	R/W		00000000в
00006Ен	Low Voltage/CPU Operation Detection Reset Control Register	LVRC	R/W, W	Low Voltage/CPU Operation Detection Reset	00111000в
00006Fн	ROM Mirror Function Select Register	ROMM	W	ROM Mirror	XXXXXXX1в
$\begin{aligned} & \text { 000070н } \\ & \text { to } \\ & 00007 \mathrm{~F}_{\mathrm{H}} \end{aligned}$	Reserved				
$\begin{aligned} & 000080_{\mathrm{H}} \\ & \text { to } \\ & 00008 \mathrm{~F}_{\mathrm{H}} \end{aligned}$	Reserved for CAN controller 1. Refer to "■ CAN CONTROLLERS"				
$\begin{aligned} & 000090_{\mathrm{H}} \\ & \text { to } \\ & 00009 \text { A }_{\mathrm{H}} \end{aligned}$	Reserved				

(Continued)

MB90350E Series

Address	Register	Abbreviation	Access	Resource name	Initial value
00009Вн	DMA Descriptor Channel Specification Register	DCSR	R/W		00000000в
00009Сн	DMA Status Register L Register	DSRL	R/W	DMA	00000000в
00009Dн	DMA Status Register H Register	DSRH	R/W		00000000в
00009Ен	Address Detect Control Register 0	PACSR0	R/W	Address Match Detection 0	00000000в
00009FH	Delayed Interrupt/Release Register	DIRR	R/W	Delayed Interrupt	XXXXXXX0в
0000АОн	Low-power Consumption Mode Control Register	LPMCR	W,R/W	Low Power Consumption Control Circuit	00011000в
0000A1H	Clock Selection Register	CKSCR	R,R/W	Low Power Consumption Control Circuit	11111100в
$\begin{aligned} & \text { 0000А2н, } \\ & \text { 0000АЗн } \end{aligned}$	Reserved				
0000A4 ${ }^{\text {H }}$	DMA Stop Status Register	DSSR	R/W	DMA	00000000в
0000A5	Automatic Ready Function Selection Register	ARSR	W	External Memory Access	0011XX00в
0000A6н	External Address Output Control Register	HACR	W		00000000в
0000A7н	Bus Control Signal Selection Register	ECSR	W		0000000Хв
0000А8н	Watchdog Control Register	WDTC	R,W	Watchdog Timer	XXXXX111в
0000А9н	Timebase Timer Control Register	TBTC	W,R/W	Timebase timer	1XX00100в
0000ААн	Watch Timer Control Register	WTC	R,R/W	Watch Timer	1X001000в
0000АВн	Reserved				
0000ACH	DMA Enable Register L Register	DERL	R/W	DMA	00000000в
0000ADн	DMA Enable Register H Register	DERH	R/W		00000000в
0000АЕн	Flash Control Status Register (Flash Devices only. Otherwise reserved)	FMCS	R,R/W	Flash memory	000X0000в
0000AFH	Reserved				
0000В号	Interrupt Control Register 00	ICR00	W,R/W	Interrupt Control	00000111в
0000B1н	Interrupt Control Register 01	ICR01	W,R/W		00000111в
0000В2н	Interrupt Control Register 02	ICR02	W,R/W		00000111в
0000В3н	Interrupt Control Register 03	ICR03	W,R/W		00000111в
0000B4н	Interrupt Control Register 04	ICR04	W,R/W		00000111в
0000B5	Interrupt Control Register 05	ICR05	W,R/W		00000111в
0000В6н	Interrupt Control Register 06	ICR06	W,R/W		00000111в
0000B7н	Interrupt Control Register 07	ICR07	W,R/W		00000111в
0000В8\%	Interrupt Control Register 08	ICR08	W,R/W		00000111в
					(Continued)

MB90350E Series

Address	Register	Abbreviation	Access	Resource name	Initial value
0000B9н	Interrupt Control Register 09	ICR09	W,R/W	Interrupt Control	00000111в
0000ВАн	Interrupt Control Register 10	ICR10	W,R/W		00000111в
0000ВВн	Interrupt Control Register 11	ICR11	W,R/W		00000111в
0000BCH	Interrupt Control Register 12	ICR12	W,R/W		00000111в
0000ВDн	Interrupt Control Register 13	ICR13	W,R/W		00000111в
0000ВЕн	Interrupt Control Register 14	ICR14	W,R/W		00000111в
0000BF	Interrupt Control Register 15	ICR15	W,R/W		00000111в
$\begin{aligned} & \text { O000СС } \mathrm{H} \\ & \text { to } \\ & 0000 \mathrm{C} 9_{\mathrm{H}} \end{aligned}$	Reserved				
0000САн	External Interrupt Enable Register 1	ENIR1	R/W	External Interrupt 1	00000000 ${ }_{\text {в }}$
0000СВн	External Interrupt Source Register 1	EIRR1	R/W		XXXXXXXX
0000ССн	External Interrupt Level Register 1	ELVR1	R/W		00000000в
0000CD	External Interrupt Level Register 1	ELVR1	R/W		00000000в
0000СЕн	External Interrupt Source Select Register	EISSR	R/W		00000000в
0000CFH	PLL/Sub clock Control register	PSCCR	W	PLL	XXXX0000в
0000D0н	DMA Buffer Address Pointer L Register	BAPL	R/W	DMA	Х XXXXXXX $^{\text {в }}$
0000D1H	DMA Buffer Address Pointer M Register	BAPM	R/W		XXXXXXXX в
0000D2н	DMA Buffer Address Pointer H Register	BAPH	R/W		XXXXXXXX в
0000D3н	DMA Control Register	DMACS	R/W		XXXXXXXX ${ }_{\text {B }}$
0000D4н	I/O Register Address Pointer L Register	IOAL	R/W		Х XXXXXXX $^{\text {в }}$
0000D5	I/O Register Address Pointer H Register	IOAH	R/W		XXXXXXXX ${ }^{\text {в }}$
0000D6н	Data Counter L Register	DCTL	R/W		XXXXXXXX ${ }_{\text {¢ }}$
0000D7н	Data Counter H Register	DCTH	R/W		XXXXXXXX
0000D8н	Serial Mode Register 2	SMR2	W,R/W	UART2	00000000в
0000D9н	Serial Control Register 2	SCR2	W,R/W		00000000в
0000DAн	Reception/Transmission Data Register 2	RDR2/TDR2	R/W		00000000в
0000DBн	Serial Status Register 2	SSR2	R,R/W		00001000в
0000DCH	Extended Communication Control Register 2	ECCR2	$\begin{aligned} & \text { R,W, } \\ & \text { R/W } \end{aligned}$		
0000DD ${ }_{\text {н }}$	Extended Status/Control Register 2	ESCR2	R/W		00000100в
0000DEн	Baud Rate Generator Register 20	BGR20	R/W		00000000в

(Continued)

MB90350E Series

Address	Register	Abbreviation	Access	Resource name	Initial value
0000DFH	Baud Rate Generator Register 21	BGR21	R/W	UART2	00000000в
$\begin{aligned} & \text { 0000ЕОн } \\ & \text { to } \\ & 0000 \mathrm{EF} \end{aligned}$	Reserved				
$\begin{aligned} & \text { 0000FOн } \\ & \text { to } \\ & 0000 \mathrm{FF}_{\mathrm{H}} \end{aligned}$	External area				
$\begin{gathered} 007900 \mathrm{H} \\ \text { to } \\ 007907 \mathrm{H} \end{gathered}$	Reserved				
007908н	Reload Register L4	PRLL4	R/W	16-bit Programmable Pulse Generator 4/5	XXXXXXXX
007909н	Reload Register H4	PRLH4	R/W		ХХХХХХХХВ
00790Ан	Reload Register L5	PRLL5	R/W		XXXXXXXX
00790Вн	Reload Register H5	PRLH5	R/W		
00790Сн	Reload Register L6	PRLL6	R/W	16-bit Programmable Pulse Generator 6/7	ХХХХХХХХв
00790D ${ }_{\text {н }}$	Reload Register H6	PRLH6	R/W		ХХХХХХХХв
00790Ен	Reload Register L7	PRLL7	R/W		ХХХХХХХХв
00790Fн	Reload Register H7	PRLH7	R/W		XXXXXXXX
007910н	Reload Register L8	PRLL8	R/W	16-bit Programmable Pulse Generator 8/9	XXXXXXXX
007911н	Reload Register H8	PRLH8	R/W		ХХХХХХХХв
007912н	Reload Register L9	PRLL9	R/W		XXXXXXXX
007913н	Reload Register H9	PRLH9	R/W		ХХХХХХХХв
007914н	Reload Register LA	PRLLA	R/W	16-bit Programmable Pulse Generator A/B	XXXXXXXX
007915	Reload Register HA	PRLHA	R/W		ХХХХХХХХв
007916н	Reload Register LB	PRLLB	R/W		ХХХХХХХХХв
007917н	Reload Register HB	PRLHB	R/W		ХХХХХХХХВ
007918 ${ }^{\text {H }}$	Reload Register LC	PRLLC	R/W	16-bit Programmable Pulse Generator C/D	ХХХХХХХХв
007919н	Reload Register HC	PRLHC	R/W		ХХХХХХХХв
00791Ан	Reload Register LD	PRLLD	R/W		ХХХХХХХХХВ
00791Вн	Reload Register HD	PRLHD	R/W		
00791标	Reload Register LE	PRLLE	R/W	16-bit Programmable Pulse Generator E/F	
00791标	Reload Register HE	PRLHE	R/W		ХХХХХХХХв
00791Eн	Reload Register LF	PRLLF	R/W		XXXXXXXX
00791FH	Reload Register HF	PRLHF	R/W		XXXXXXXX
007920н	Input Capture Register 0	IPCP0	R	Input Capture 0/1	XXXXXXXX
007921н	Input Capture Register 0	IPCP0	R		ХХХХХХХХВ
007922н	Input Capture Register 1	IPCP1	R		ХХХХХХХХв
007923н	Input Capture Register 1	IPCP1	R		XXXXXXXX

(Continued)

MB90350E Series

Address	Register	Abbreviation	Access	Resource name	Initial value
$\begin{gathered} 007924 \mathrm{H} \\ \text { to } \\ 007927 \mathrm{H} \end{gathered}$	Reserved				
007928н	Input Capture Register 4	IPCP4	R	Input Capture 4/5	ХХХХХХХХв
007929н	Input Capture Register 4	IPCP4	R		
00792Ан	Input Capture Register 5	IPCP5	R		ХХХХХХХХв
00792Вн	Input Capture Register 5	IPCP5	R		XXXXXXXX
00792Сн	Input Capture Register 6	IPCP6	R	Input Capture 6/7	XXXXXXXX ${ }_{\text {¢ }}$
00792Dн	Input Capture Register 6	IPCP6	R		XXXXXXXX ${ }^{\text {¢ }}$
00792Ен	Input Capture Register 7	IPCP7	R		XXXXXXXX ${ }_{\text {в }}$
00792FH	Input Capture Register 7	IPCP7	R		XXXXXXXX
$\begin{aligned} & 007930_{\mathrm{H}} \\ & \text { to } \\ & 007937 \mathrm{H} \end{aligned}$	Reserved				
007938 ${ }_{\text {H }}$	Output Compare Register 4	OCCP4	R/W	Output Compare 4/5	ХХХХХХХХв
007939н	Output Compare Register 4	OCCP4	R/W		XXXXXXXX
00793Ан	Output Compare Register 5	OCCP5	R/W		XXXXXXXX ${ }^{\text {¢ }}$
00793Вн	Output Compare Register 5	OCCP5	R/W		XXXXXXXX
00793Сн	Output Compare Register 6	OCCP6	R/W	Output Compare 6/7	XXXXXXXX ${ }_{\text {в }}$
00793号	Output Compare Register 6	OCCP6	R/W		XXXXXXXXX
00793Ен	Output Compare Register 7	OCCP7	R/W		ХХХХХХХХХв
00793Fн	Output Compare Register 7	OCCP7	R/W		XXXXXXXXв
007940н	Timer Data Register 0	TCDT0	R/W	I/O Timer 0	00000000 ${ }_{\text {в }}$
007941н	Timer Data Register 0	TCDT0	R/W		00000000 в
007942н	Timer Control Status Register 0	TCCSL0	R/W		00000000в
007943н	Timer Control Status Register 0	TCCSH0	R/W		0XXXXXXX ${ }_{\text {в }}$
007944н	Timer Data Register 1	TCDT1	R/W	I/O Timer 1	00000000в
007945 ${ }^{\text {H }}$	Timer Data Register 1	TCDT1	R/W		00000000в
007946н	Timer Control Status Register 1	TCCSL1	R/W		00000000в
007947н	Timer Control Status Register 1	TCCSH1	R/W		OXXXXXXX ${ }_{\text {в }}$
007948	Timer Register 0/Reload Register 0	TMR0/ TMRLR0	R/W	16-bit Reload Timer 0	XXXXXXXX
007949н			R/W		ХХХХХХХХХв
00794Ан	Timer Register 1/Reload Register 1	TMR1/ TMRLR1	R/W	16-bit Reload Timer 1	XXXXXXXX
00794Вн			R/W		ХХХХХХХХХв
00794С ${ }_{\text {н }}$	Timer Register 2/Reload Register 2	TMR2/ TMRLR2	R/W	16-bit Reload Timer 2	ХХХХХХХХв
00794D			R/W		ХХХХХХХХХВ
00794Ен	Timer Register 3/Reload Register 3	TMR3/ TMRLR3	R/W	16-bit Reload Timer 3	ХХХХХХХХХв
00794FH			R/W		XXXXXXXX

(Continued)

MB90350E Series

Address	Register	Abbreviation	Access	Resource name	Initial value
007950н	Serial Mode Register 3	SMR3	W, R/W	UART3	00000000в
007951н	Serial Control Register 3	SCR3	W, R/W		00000000в
007952н	Reception/Transmission Data Register 3	RDR3/TDR3	R/W		00000000в
007953н	Serial Status Register 3	SSR3	R,R/W		00001000в
007954н	Extended Communication Control Register 3	ECCR3	$\begin{aligned} & \hline \text { R,W, } \\ & \text { R/W } \end{aligned}$		000000XХв
007955н	Extended Status Control Register 3	ESCR3	R/W		00000100в
007956н	Baud Rate Generator Register 30	BGR30	R/W		00000000 в
007957	Baud Rate Generator Register 31	BGR31	R/W		00000000в
$\begin{aligned} & \text { 007958н, } \\ & \text { 007959н } \end{aligned}$	Reserved				
007960н	Clock supervisor Control Register	CSVCR	R, R/W	Clock supervisor	00011100в
$\begin{aligned} & \text { 007961н } \\ & \text { to } \\ & 00796 \text { D }^{2} \end{aligned}$	Reserved				
00796Ен	CAN Direct Mode Register	CDMR	R/W	CAN Clock Sync	XXXXXXX0в
00796Fн	Reserved				
007970н	$1^{2} \mathrm{C}$ Bus Status Register 0	IBSR0	R	$\mathrm{I}^{2} \mathrm{C}$ Interface 0	00000000в
007971н	${ }^{1} 2 \mathrm{C}$ Bus Control Register 0	IBCR0	W,R/W		00000000 в
007972н	$\mathrm{I}^{2} \mathrm{C}$ 10-bit Slave Address Register 0	ITBALO	R/W		00000000в
007973н		ITBAH0	R/W		00000000 ${ }_{\text {в }}$
007974н	${ }^{2} \mathrm{C}$ 10-bit Slave Address Mask Register 0	ITMKLO	R/W		11111111 ${ }_{\text {в }}$
007975		ITMKH0	R/W		00111111в
007976н	$1^{2} \mathrm{C} 7$-bit Slave Address Register 0	ISBA0	R/W		00000000в
007977н	$1^{2} \mathrm{C} 7$-bit Slave Address Mask Register 0	ISMK0	R/W		01111111в
007978н	$1^{2} \mathrm{C}$ data register 0	IDAR0	R/W		00000000в
$\begin{aligned} & \text { 007979н, } \\ & \text { 00797Ан } \end{aligned}$	Reserved				
00797Вн	$1^{2} \mathrm{C}$ Clock Control Register 0	ICCR0	R/W	${ }^{2} \mathrm{C}$ Interface 0	00011111в
$\begin{aligned} & 00797 \mathrm{C}_{\mathrm{H}} \\ & \text { to } \\ & 0079 \mathrm{~A} 1_{\mathrm{H}} \end{aligned}$	Reserved				
0079А2н	Flash Write Control Register 0	FWR0	R/W	Dual Operation Flash	00000000в
0079АЗн	Flash Write Control Register 1	FWR1	R/W		00000000в
0079A4н	Sector Change Setting Register 0	SSR0	R/W		00XXXXX0в
$\begin{aligned} & \text { 0079А5н } \\ & \text { to } \\ & 0079 \mathrm{C} 1 н \end{aligned}$	Reserved				
0079С2н	Setting Prohibited				

(Continued)

MB90350E Series

Address	Register	Abbreviation	Access	Resource name	Initial value
	Reserved				
0079EОн	Detect Address Setting Register 0	PADR0	R/W	Address Match Detection 0	XXXXXXXX
0079E1н	Detect Address Setting Register 0	PADR0	R/W		XXXXXXXX
0079E2н	Detect Address Setting Register 0	PADR0	R/W		XXXXXXXX
0079Е3н	Detect Address Setting Register 1	PADR1	R/W		XXXXXXXXB
0079E4H	Detect Address Setting Register 1	PADR1	R/W		XXXXXXXX
0079E5н	Detect Address Setting Register 1	PADR1	R/W		XXXXXXXX
0079E6н	Detect Address Setting Register 2	PADR2	R/W		XXXXXXXX
0079E7H	Detect Address Setting Register 2	PADR2	R/W		XXXXXXXX
0079E8н	Detect Address Setting Register 2	PADR2	R/W		XXXXXXXX
$\begin{gathered} \text { 0079Е9н } \\ \text { to } \\ 0079 \mathrm{EFH} \end{gathered}$	Reserved				
0079F0н	Detect Address Setting Register 3	PADR3	R/W	Address Match Detection 1	XXXXXXXX
0079F1н	Detect Address Setting Register 3	PADR3	R/W		XXXXXXXX
0079F2н	Detect Address Setting Register 3	PADR3	R/W		XXXXXXXX
0079F3н	Detect Address Setting Register 4	PADR4	R/W		XXXXXXXX
0079F4H	Detect Address Setting Register 4	PADR4	R/W		XXXXXXXX
0079F5н	Detect Address Setting Register 4	PADR4	R/W		XXXXXXXX
0079F6н	Detect Address Setting Register 5	PADR5	R/W		XXXXXXXX
0079F7H	Detect Address Setting Register 5	PADR5	R/W		XXXXXXXXB
0079F8н	Detect Address Setting Register 5	PADR5	R/W		XXXXXXXX
$\begin{gathered} \text { 0079F9н } \\ \text { to } \\ 007 \text { o }^{2} \end{gathered}$	Reserved				
$\begin{gathered} \text { 007COOH } \\ \text { to } \\ 007 \mathrm{DFFH}_{\mathrm{H}} \end{gathered}$	Reserved for CAN controller 1. Refer to "■ CAN CONTROLLERS"				
$\begin{gathered} \text { 007EOOH } \\ \text { to } \\ 007 \text { FFF } \end{gathered}$	Reserved				

Notes: - Initial value of " X " represents unknown value.

- Any write access to reserved addresses in I/O map should not be performed. A read access to reserved addresses results reading unknown value.

MB90350E Series

CAN CONTROLLERS

- Compliant with CAN standard Version2.0 Part A and Part B
- Supports transmission/reception in standard frame and extended frame formats
- Supports transmitting of data frames by receiving remote frames
- 16 transmitting/receiving message buffers
- 29-bit ID and 8-byte data
- Multi-level message buffer configuration
- Provides full-bit comparison, full-bit mask, acceptance register 0/acceptance register 1 for each message buffer as ID acceptance mask
- Two acceptance mask registers in either standard frame format or extended frame formats
- Bit rate programmable from 10 kbps to 2 Mbps (when input clock is at 16 MHz)

List of Control Registers

Address	Register	Abbreviation	Access	Initial Value
CAN1				
000080н	Message buffer enable register	BVALR	R/W	$\begin{aligned} & \text { 00000000в } \\ & \text { 000000000в } \end{aligned}$
000081н				
000082н	Transmit request register	TREQR	R/W	$\begin{aligned} & 00000000_{\mathrm{B}} \\ & 00000000_{\mathrm{B}} \end{aligned}$
000083н				
000084н	Transmit cancel register	TCANR	W	$\begin{aligned} & 00000000_{\mathrm{B}} \\ & 00000000_{\mathrm{B}} \end{aligned}$
000085н				
000086н	Transmission complete register	TCR	R/W	$\begin{aligned} & 00000000_{\mathrm{B}} \\ & 00000000_{\mathrm{B}} \end{aligned}$
000087н				
000088н	Receive complete register	RCR	R/W	$\begin{aligned} & 00000000_{\mathrm{B}} \\ & 00000000_{\mathrm{B}} \end{aligned}$
000089н				
00008Ан	Remote request receiving register	RRTRR	R/W	$\begin{aligned} & \text { 00000000в } \\ & \text { 000000000в } \end{aligned}$
00008Вн				
00008Cн	Receive overrun register	ROVRR	R/W	$\begin{aligned} & 00000000_{\mathrm{B}} \\ & 00000000 \text { в } \end{aligned}$
00008Dн				
00008Ен	Reception interrupt enable register	RIER	R/W	$\begin{aligned} & 00000000_{\mathrm{B}} \\ & 00000000_{\mathrm{B}} \end{aligned}$
00008Fн				

(Continued)

MB90350E Series

(Continued)

Address	Register	Abbreviation	Access	Initial Value
CAN1				
007D00н	Control status register	CSR	R/W, W R/W, R	$\begin{aligned} & \text { 0XXXX0X1в } \\ & \text { 00XXX000в } \end{aligned}$
007D01н				
007D02н	Last event indicator register	LEIR	R/W	$\begin{aligned} & 000 Х 0000 \text { в } \\ & \text { XXXXXXXXв } \end{aligned}$
007D03н				
007D04н	Receive/transmit error counter	RTEC	R	$\begin{aligned} & 00000000_{\mathrm{B}} \\ & 00000000_{\mathrm{B}} \end{aligned}$
007D05н				
007D06н	Bit timing register	BTR	R/W	$\begin{aligned} & \text { 11111111b } \\ & \text { X1111111B } \end{aligned}$
007D07н				
007D08н	IDE register	IDER	R/W	$\begin{aligned} & \text { ХХХХХХХХв } \\ & \text { ХХХХХХХХв } \end{aligned}$
007D09н				
007D0Ан	Transmit RTR register	TRTRR	R/W	$\begin{aligned} & 00000000_{\mathrm{B}} \\ & 00000000_{\mathrm{B}} \end{aligned}$
007D0Bн				
007D0Cн	Remote frame receive waiting register	RFWTR	R/W	$\begin{aligned} & \text { ХХХХХХХХв } \\ & \text { ХХХХХХХХв } \end{aligned}$
007D0D				
007D0Eн	Transmit interrupt enable register	TIER	R/W	$\begin{aligned} & 00000000_{\mathrm{B}} \\ & 00000000_{\mathrm{B}} \end{aligned}$
007D0F				
007D10н	Acceptance mask select register	AMSR	R/W	$\begin{aligned} & \text { ХХХХХХХХв } \\ & \text { ХХХХХХХХв } \end{aligned}$
007D11н				
007D12н				XXXXXXXX
007D13н				XXXXXXXX
007D14н	Acceptance mask register 0	AMRO	R/W	$\begin{aligned} & \text { ХХХХХХХХв } \\ & \text { ХХХХХХХХв } \end{aligned}$
007D15н				
007D16н				ХХХХХХХХХв
007D17н				
007D18н	Acceptance mask register 1	AMR1	R/W	$\begin{aligned} & \text { ХХХХХХХХв } \\ & \text { ХХХХХХХХв } \end{aligned}$
007D19н				
007D1Ан				ХХХХХХХХХв
007D1Вн				ХХХХХХХХХв

MB90350E Series

List of Message Buffers (ID Registers)

Address	Register	Abbreviation	Access	Initial Value
CAN1				
$\begin{gathered} 007 \mathrm{COOH} \\ \text { to } \\ 007 \mathrm{C} 1 \mathrm{~F}_{\mathrm{H}} \end{gathered}$	General-purpose RAM	-	R/W	$\begin{gathered} \text { XXXXXXXXB } \\ \text { to } \\ \text { XXXXXXXX } \end{gathered}$
007C2OH	ID register 0	IDR0	R/W	xxxxxxxx
007C21н				XXXXXXXX
007C22н				XXXXXXXX
007C23н				
007C24	ID register 1	IDR1	R/W	xxxxxxxx
007C25H				
007C26				xxxxxxxx
007C27 ${ }^{\text {H }}$				XXXXXXXX
007C28н	ID register 2	IDR2	R/W	xxxxxxxx
007C29				XXXXXXXX
007C2Aн				xxxxxxxx
007 C 2 BH				
007C2CH	ID register 3	IDR3	R/W	xxxxxxxx
007C2D				XXXXXXXX
007C2Eн				xxxxxxxx
007C2F ${ }^{\text {\% }}$				XXXXXXXX
007С30н	ID register 4	IDR4	R/W	XXXXXXXX
007C31н				Х ХXXXXXX $^{\text {¢ }}$
007С32н				xxxxxxxx
007С33н				XXXXXXXX
007C34	ID register 5	IDR5	R/W	xxxxxxxx
007C35				
007C36				xxxxxxxx
007C37				XXXXXXXX
007C38	ID register 6	IDR6	R/W	xxxxxxxx
007C39				XXXXXXXX
007С3Ан				xxxxxxxx
007С3Вн				XXXXXXXX
007C3CH	ID register 7	IDR7	R/W	XXXXXXXX
007С3D				XXXXXXXX
007С3Ен				xxxxxxxx
007C3FH				XXXXXXXX

(Continued)

MB90350E Series

(Continued)

Address	Register	Abbreviation	Access	Initial Value
CAN1				
007C40н	ID register 8	IDR8	R/W	XXXXXXXX
007C41н				ХХХХХХХХХв
007С42н				XXXXXXXX
007С43н				ХХХХХХХХв
007C44	ID register 9	IDR9	R/W	X XXXXXXX $^{\text {¢ }}$
007C45				ХХХХХХХХв
007C46н				X $X X X X X X X$ в
007C47н				ХХХХХХХХХв
007C48н	ID register 10	IDR10	R/W	ХХХХХХХХХв
007С49н				ХХХХХХХХХ
007С4Ан				XXXXXXXX
007С4Вн				ХХХХХХХХв
007C4С	ID register 11	IDR11	R/W	XXXXXXXX
007C4D				
007С4Ен				XXXXXXXX
007C4F ${ }_{\text {H }}$				ХХХХХХХХХв
007C50н	ID register 12	IDR12	R/W	XXXXXXXX
007C51н				ХХХХХХХХХв
007C52н				XXXXXXXX
007С53н				ХХХХХХХХХв
007C54н	ID register 13	IDR13	R/W	XXXXXXXX
007C55				ХХХХХХХХХв
007C56н				XXXXXXXX
007C57н				ХХХХХХХХХв
007C58н	ID register 14	IDR14	R/W	XXXXXXXX
007С59н				XXXXXXXX
007С5Ан				ХХХХХХХХ ${ }_{\text {в }}$
007С5Вн				ХХХХХХХХХв
007С5Сн	ID register 15	IDR15	R/W	XXXXXXXX
007C5D				
007C5Eн				XXXXXXXX
007C5FH				ХХХХХХХХХв

MB90350E Series

List of Message Buffers (DLC Registers and Data Registers)

Address	Register	Abbreviation	Access	Initial Value
CAN1				
007C60н	DLC register 0	DLCR0	R/W	XXXXXXXХв
007C61н				
007C62н	DLC register 1	DLCR1	R/W	XXXXXXXXв
007С63н				
007C64	DLC register 2	DLCR2	R/W	XXXXXXXХв
007C65				
007C66н	DLC register 3	DLCR3	R/W	XXXXXXXХв
007C67 ${ }_{\text {H }}$				
007С68н	DLC register 4	DLCR4	R/W	XXXXXXXXв
007С69н				
007С6Ан	DLC register 5	DLCR5	R/W	XXXXXXXX
007С6Вн				
007С6Сн	DLC register 6	DLCR6	R/W	XXXXXXXХв
007C6D				
007C6Eн	DLC register 7	DLCR7	R/W	XXXXXXXХв
007C6F				
007C70н	DLC register 8	DLCR8	R/W	XXXXXXXXв
007C71н				
007С72н	DLC register 9	DLCR9	R/W	XXXXXXXX
007С73н				
007C74	DLC register 10	DLCR10	R/W	XXXXXXXXв
007C75				
007C76н	DLC register 11	DLCR11	R/W	ХХХХХХХХХ
007C77				
007С78н	DLC register 12	DLCR12	R/W	XXXXXXXХв
007С79н				
007С7Ан	DLC register 13	DLCR13	R/W	XXXXXXXХв
007С7Вн				
007С7Сн	DLC register 14	DLCR14	R/W	XXXXXXXХв
007C7D				
007C7Eн	DLC register 15	DLCR15	R/W	ХХХХХХХХв
007C7F				

(Continued)

MB90350E Series

Address	Register	Abbreviation	Access	Initial Value
CAN1				
$\begin{aligned} & \text { 007С80н } \\ & \text { to } \\ & 007 \mathrm{C} 87 \mathrm{н} \end{aligned}$	Data register 0 (8 bytes)	DTR0	R/W	$\begin{gathered} \text { XXXXXXXXв } \\ \text { to } \\ X X X X X X \text { в } \end{gathered}$
$\begin{aligned} & \text { 007C88н } \\ & \text { to } \\ & 007 \mathrm{C} 8 \mathrm{~F}_{\mathrm{H}} \end{aligned}$	Data register 1 (8 bytes)	DTR1	R/W	$\begin{gathered} \text { XXXXXXXXв } \\ \text { to } \\ \text { XXXXXX } \end{gathered}$
$\begin{aligned} & 007 \mathrm{C90} \\ & \text { to } \\ & 007 \mathrm{C} 97 \mathrm{H} \end{aligned}$	Data register 2 (8 bytes)	DTR2	R/W	$\begin{gathered} \text { XXXXXXXXв } \\ \text { to } \\ \text { XXXXXXX } \end{gathered}$
$\begin{aligned} & \hline 007 \mathrm{C98н} \\ & \text { to } \\ & 007 \mathrm{C} 9 \mathrm{~F}_{\mathrm{H}} \end{aligned}$	Data register 3 (8 bytes)	DTR3	R/W	$\begin{gathered} \text { XXXXXXXX } \\ \text { to } \\ X X X X X X X \end{gathered}$
$\begin{aligned} & \text { 007САОн } \\ & \text { to } \\ & 007 \mathrm{CA} \text { н } \end{aligned}$	Data register 4 (8 bytes)	DTR4	R/W	$\begin{gathered} \text { XXXXXXXXв } \\ \text { to } \\ \text { XXXXXXX } \end{gathered}$
$\begin{aligned} & \text { 007СА8н } \\ & \text { to } \\ & 007 \mathrm{CAF} \end{aligned}$	Data register 5 (8 bytes)	DTR5	R/W	$\begin{gathered} \hline \text { XXXXXXXX } \\ \text { to } \\ \text { XXXXXXX } \\ \hline \end{gathered}$
$\begin{gathered} 007 \mathrm{CB0н} \\ \text { to } \\ 007 \mathrm{CB7} \end{gathered}$	Data register 6 (8 bytes)	DTR6	R/W	$\begin{gathered} \hline \text { XXXXXXXXв } \\ \text { to } \\ \text { XXXXXXX } \\ \hline \end{gathered}$
$\begin{aligned} & \hline \begin{array}{c} \text { 007CB8н } \\ \text { to } \\ 007 \text { CBF }_{H} \end{array} \end{aligned}$	Data register 7 (8 bytes)	DTR7	R/W	$\begin{gathered} \text { XXXXXXXX } \\ \text { to } \\ X X X X X X X \end{gathered}$
$\begin{gathered} \hline 007 \mathrm{CCOH} \\ \text { to } \\ 007 \mathrm{CC} 7 \mathrm{H} \\ \hline \end{gathered}$	Data register 8 (8 bytes)	DTR8	R/W	$\begin{gathered} \hline \text { XXXXXXXXB } \\ \text { to } \\ \text { XXXXXXX } \\ \hline \end{gathered}$
$\begin{gathered} \hline 007 \mathrm{CC8H} \\ \text { to } \\ 007 \mathrm{CCF} \\ \hline \end{gathered}$	Data register 9 (8 bytes)	DTR9	R/W	$\begin{gathered} \hline \text { XXXXXXXX } \\ \text { to } \\ \text { XXXXXX } \\ \hline \end{gathered}$
$\begin{aligned} & \text { 007CD0н } \\ & \text { to } \\ & 007 \mathrm{CD7} \end{aligned}$	Data register 10 (8 bytes)	DTR10	R/W	$\begin{gathered} \text { XXXXXXXXв } \\ \text { to } \\ \text { XXXXXX } \end{gathered}$
$\begin{aligned} & \text { 007CD8н } \\ & \text { to } \\ & 007 \mathrm{CDF} \end{aligned}$	Data register 11 (8 bytes)	DTR11	R/W	$\begin{gathered} \text { XXXXXXXXв } \\ \text { to } \\ \text { XXXXXX } \end{gathered}$
$\begin{aligned} & \text { O07CE0н } \\ & \text { to } \\ & 007 \mathrm{CE} 7 \mathrm{H} \end{aligned}$	Data register 12 (8 bytes)	DTR12	R/W	$\begin{gathered} \text { XXXXXXXXв } \\ \text { to } \\ \text { XXXXXX } \end{gathered}$
$\begin{aligned} & \text { O07CE8н } \\ & \text { to } \\ & 007 \mathrm{CEF} \end{aligned}$	Data register 13 (8 bytes)	DTR13	R/W	$\begin{gathered} \text { XXXXXXXX } \\ \text { to } \\ X X X X X X X \end{gathered}$

(Continued)

MB90350E Series

(Continued)

Address	Register	Abbreviation	Access	Initial Value
CAN1				
$\begin{aligned} & \hline \text { 007CFOн } \\ & \text { to } \\ & 007 \text { CF7н } \end{aligned}$	Data register 14 (8 bytes)	DTR14	R/W	$\begin{gathered} \hline \text { XXXXXXXX }_{\text {B }}^{\text {to }} \\ \text { XXXXXX } \end{gathered}$
$\begin{aligned} & \text { 007CF8н } \\ & \text { to } \\ & 007 \text { CFF } \end{aligned}$	Data register 15 (8 bytes)	DTR15	R/W	$\begin{gathered} \text { XXXXXXXXB } \\ \text { to } \\ \text { XXXXXXXXB } \end{gathered}$

MB90350E Series

INTERRUPT FACTORS, INTERRUPT VECTORS, INTERRUPT CONTROL REGISTER

Interrupt cause	$\mathrm{El}^{2} \mathrm{OS}$ corresponding	DMA ch number	Interrupt vector		Interrupt control register	
			Number	Address	Number	Address
Reset	N	-	\#08	FFFFDC ${ }_{\text {H }}$	-	-
INT9 instruction	N	-	\#09	FFFFD8 ${ }_{\text {н }}$	-	-
Exception	N	-	\#10	FFFFD4 ${ }_{\text {н }}$	-	-
Reserved	N	-	\#11	FFFFD0н	ICR00	0000B0н
Reserved	N	-	\#12	FFFFCCH		
CAN 1 RX / Input Capture 6	Y1	-	\#13	FFFFFC8 ${ }_{\text {н }}$	ICR01	0000B1н
CAN 1 TX/NS / Input Capture 7	Y1	-	\#14	FFFFC4 ${ }_{\text {¢ }}$		
$\mathrm{I}^{2} \mathrm{C}$	N	-	\#15	FFFFCOH	ICR02	0000B2н
Reserved	N	-	\#16	FFFFBC		
16-bit Reload Timer 0	Y1	0	\#17	FFFFB88	ICR03	0000В3 ${ }_{\text {H }}$
16-bit Reload Timer 1	Y1	1	\#18	FFFFBB4		
16-bit Reload Timer 2	Y1	2	\#19	FFFFB0н	ICR04	0000B4н
16-bit Reload Timer 3	Y1	-	\#20	FFFFACH		
PPG 4/5	N	-	\#21	FFFFA8H	ICR05	0000B5
PPG 6/7	N	-	\#22	FFFFA4н		
PPG 8/9/C/D	N	-	\#23	FFFFA0н	ICR06	0000B6н
PPG A/B/E/F	N	-	\#24	FFFF9C ${ }_{\text {н }}$		
Timebase Timer	N	-	\#25	FFFF98	ICR07	0000B7 ${ }^{\text {H }}$
External Interrupt 8 to 11	Y1	3	\#26	FFFF944		
Watch Timer	N	-	\#27	FFFF90н	ICR08	0000B8н
External Interrupt 12 to 15	Y1	4	\#28	FFFF8C ${ }_{\text {H }}$		
A/D Converter	Y1	5	\#29	FFFF88 ${ }_{\text {н }}$	ICR09	0000B9н
I/O Timer 0 / I/O Timer 1	N	-	\#30	FFFF84н		
Input Capture 4/5	Y1	6	\#31	FFFF80 ${ }_{\text {н }}$	ICR10	0000ВАн
Output Compare 4/5	Y1	7	\#32	FFFF7C ${ }_{\text {н }}$		
Input Capture 0/1	Y1	8	\#33	FFFF78 ${ }_{\text {¢ }}$	ICR11	0000BBн
Output Compare 6/7	Y1	9	\#34	FFFFF74		
Reserved	N	10	\#35	FFFFF70н	ICR12	0000BCH
Reserved	N	11	\#36	FFFF6C ${ }_{\text {H }}$		
UART 3 RX	Y2	12	\#37	FFFF68\%	ICR13	0000BDн
UART 3 TX	Y1	13	\#38	FFFF64н		

MB90350E Series

(Continued)

Interrupt cause	$\mathrm{El}^{2} \mathrm{OS}$ corresponding	DMA ch number	Interrupt vector		Interrupt control register	
			Number	Address	Number	Address
UART 2 RX	Y2	14	\#39	FFFF60н	ICR14	0000ВЕн
UART 2 TX	Y1	15	\#40	FFFF5Cн		
Flash memory	N	-	\#41	FFFF58н	ICR15	0000BFH
Delayed interrupt	N	-	\#42	FFFF54 ${ }_{\text {¢ }}$		

Y1: Usable
Y2 : Usable, with $\mathrm{El}^{2} \mathrm{OS}$ stop function
N : Unusable
Notes : - The peripheral resources sharing the ICR register have the same interrupt level.

- When the peripheral resources sharing the ICR register use extended intelligent I/O service, only one can use $\mathrm{El}^{2} \mathrm{OS}$ at a time.
- When either of the two peripheral resources sharing the ICR register specifies $\mathrm{El}^{2} \mathrm{OS}$, the other one cannot use interrupts.

MB90350E Series

ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

Parameter	Symbol	Rating		Unit	Remarks
		Min	Max		
Power supply voltage*1	Vcc	Vss - 0.3	Vss +6.0	V	
	AVcc	Vss - 0.3	Vss +6.0	V	$\mathrm{Vcc}=\mathrm{AV}_{\text {cc }}{ }^{* 2}$
	AVRH	Vss - 0.3	Vss +6.0	V	AVcc \geq AVRH*2 *
Input voltage*1	V	Vss - 0.3	Vss +6.0	V	*3
Output voltage*1	Vo	Vss - 0.3	Vss +6.0	V	*3
Maximum Clamp Current	Iclamp	-4.0	+4.0	mA	*5
Total Maximum Clamp Current	$\Sigma \mid$ lclampl	-	40	mA	*5
"L" level maximum output current	los	-	15	mA	* 4
"L" level average output current	lolav	-	4	mA	* 4
"L" level maximum overall output current	Elob	-	100	mA	* 4
"L" level average overall output current	Elolav	-	50	mA	* 4
"H" level maximum output current	Іон	-	-15	mA	* 4
"H" level average output current	lohav	-	-4	mA	* 4
"H" level maximum overall output current	Σ Іон	-	-100	mA	*4
"H" level average overall output current	Σ lohav	-	-50	mA	*4
Power consumption	PD	-	320	mW	
Operating temperature	$\mathrm{T}_{\text {A }}$	-40	+105	${ }^{\circ} \mathrm{C}$	
		-40	+125	${ }^{\circ} \mathrm{C}$	* 6
Storage temperature	Tstg	-55	+150	${ }^{\circ} \mathrm{C}$	

(Continued)

MB90350E Series

(Continued)

*1: This parameter is based on $\mathrm{V}_{\mathrm{ss}}=\mathrm{AV}$ ss $=0 \mathrm{~V}$
*2: Set $A V c c$ and $V c c$ to the same voltage. Make sure that $A V c c$ does not exceed $V c c$ and that the voltage at the analog inputs does not exceed $A V c c$ when the power is switched on.
*3: $\mathrm{V}_{\text {}}$ and V o should not exceed $\mathrm{V} c \mathrm{c}+0.3 \mathrm{~V}$. $\mathrm{V}_{\text {I }}$ should not exceed the specified ratings. However if the maximum current to/from an input is limited by some means with external components, the IcLamp rating supersedes the V , rating.
*4: Applicable to pins: P00 to P07, P10 to P17, P20 to P25, P30 to P37, P40 to P45, P50 to P56, P60 to P67
*5: • Applicable to pins: P00 to P07, P10 to P17, P20 to P25, P30 to P37, P40 to P45, P50 to P56 (for evaluation device : P50 to P55) , P60 to P67

- Use within recommended operating conditions.
- Use at DC voltage (current)
- The +B signal should always be applied a connecting limit resistance between the +B signal and the microcontroller.
- The value of the limiting resistance should be set so that when the +B signal is applied the input current to the microcontroller pin does not exceed rated values, either instantaneously or for prolonged periods.
- Note that when the microcontroller drive current is low, such as in the power saving modes, the +B input potential may pass through the protective diode and increase the potential at the Vcc pin, and this may affect other devices.
- Note that if a +B signal is input when the microcontroller power supply is off (not fixed at 0 V), the power supply is provided from the pins, so that incomplete operation may result.
- Note that if the +B input is applied during power-on, the power supply is provided from the pins and the resulting power supply voltage may not be sufficient to operate the power-on reset.
- Care must be taken not to leave the +B input pin open.
- Recommended circuit sample:
- Input/output equivalent circuits

*6 : If used exceeding $T_{A}=+105^{\circ} \mathrm{C}$, be sure to contact Fujitsu for reliability limitations.
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

MB90350E Series

2. Recommended Operating Conditions

$$
\left(\mathrm{V}_{\mathrm{ss}}=\mathrm{AV} \mathrm{~V}_{\mathrm{ss}}=0 \mathrm{~V}\right)
$$

Parameter	Symbol	Value			Unit	Remarks
		Min	Typ	Max		
Power supply voltage	Vcc, AVcc	4.0	5.0	5.5	V	Under normal operation
		3.5	5.0	5.5	V	Under normal operation, when not using the A/D converter and not Flash programming.
		4.5	5.0	5.5	V	When External bus is used.
		3.0	-	5.5	V	Maintains RAM data in stop mode
Smoothing capacitor	Cs	0.1	-	1.0	$\mu \mathrm{F}$	Use a ceramic capacitor or comparable capacitor of the AC characteristics. Bypass capacitor at the V cc pin should be greater than this capacitor.
Operating temperature	TA	-40	-	+125	${ }^{\circ} \mathrm{C}$	*

* : If used exceeding $\mathrm{T}_{\mathrm{A}}=+105^{\circ} \mathrm{C}$, be sure to contact Fujitsu for reliability limitations.
- C Pin Connection Diagram

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.
Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

MB90350E Series

3. DC Characteristics
$\left(\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}, \mathrm{V} \mathrm{Vc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{fcp} \leq 24 \mathrm{MHz}, \mathrm{Vss}=\mathrm{AV} \mathrm{Ss}=0 \mathrm{~V}\right)$

Parameter	$\begin{array}{\|c} \text { Sym- } \\ \text { bol } \end{array}$	Pin	Condition	Value			Unit	Remarks
				Min	Typ	Max		
"H" level input voltage (At $\mathrm{V}_{\mathrm{cc}}=$ $5 \mathrm{~V} \pm 10 \%$)	$\mathrm{V}_{\text {Hs }}$	-	-	0.8 Vcc	-	$\mathrm{Vcc}+0.3$	V	Pin inputs if CMOS hysteresis input levels are selected (exceptP12, P15, P44, P45, P50)
	VIHA	-	-	0.8 Vcc	-	$\mathrm{V} \mathrm{cc}+0.3$	V	Pin inputs if Automotive input levels are selected
	V HT $^{\text {r }}$	-	-	2.0	-	$V_{c c}+0.3$	V	Pin inputs if TTL input levels are selected
	$\mathrm{V}_{\text {IHS }}$	-	-	0.7 Vcc	-	$\mathrm{Vcc}+0.3$	V	P12, P15, P50 inputs if CMOS input levels are selected
	$\mathrm{V}_{\text {HII }}$	-	-	0.7 Vcc	-	$\mathrm{Vcc}+0.3$	V	P44, P45 inputs if CMOS hysteresis input levels are selected
	VIHR	-	-	0.8 Vcc	-	$\mathrm{Vcc}+0.3$	V	$\overline{\text { RST input pin (CMOS }}$ hysteresis)
	Vінм	-	-	Vcc-0.3	-	$\mathrm{V} \mathrm{cc}+0.3$	V	MD input pin
"L" level input voltage (At $\mathrm{V}_{\mathrm{cc}}=$ $5 \mathrm{~V} \pm 10 \%$)	Vıs	-	-	Vss - 0.3	-	0.2 Vcc	V	Pin inputs if CMOS hysteresis input levels are selected (except P12, P15, P44, P45, P50)
	VILA	-	-	Vss - 0.3	-	0.5 Vcc	V	Pin inputs if Automotive input levels are selected
	VILT	-	-	Vss - 0.3	-	0.8	V	Pin inputs if TTL input levels are selected
	Vıss	-	-	Vss - 0.3	-	0.3 Vcc	V	P12, P15, P50 inputs if CMOS input levels are selected
	VIL	-	-	Vss - 0.3	-	0.3 Vcc	V	P44, P45 inputs if CMOS hysteresis input levels are selected
	VILR	-	-	Vss - 0.3	-	0.2 Vcc	V	$\overline{\text { RST }}$ input pin (CMOS hysteresis)
	VILM	-	-	Vss - 0.3	-	Vss +0.3	V	MD input pin
Output "H" voltage	Vон	Normal outputs	$\begin{aligned} & \mathrm{V} \mathrm{cc}=4.5 \mathrm{~V}, \\ & \mathrm{loH}=-4.0 \mathrm{~mA} \end{aligned}$	Vcc-0.5	-	-	V	
Output "H" voltage	Vont	${ }^{12}$ C current outputs	$\begin{aligned} & \mathrm{V} \mathrm{cc}=4.5 \mathrm{~V}, \\ & \mathrm{loH}=-3.0 \mathrm{~mA} \end{aligned}$	Vcc-0.5	-	-	V	

(Continued)

MB90350E Series

($\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{V} \mathrm{cc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{fcP} \leq 24 \mathrm{MHz}, \mathrm{V}_{\mathrm{ss}}=\mathrm{AV} \mathrm{Ss}=0 \mathrm{~V}$)

Parameter	Symbol	Pin	Condition	Value			Unit	Remarks
				Min	Typ	Max		
Output "L" voltage	Vol	Normal outputs	$\begin{aligned} & \mathrm{V} \mathrm{cc}=4.5 \mathrm{~V}, \\ & \mathrm{loL}=4.0 \mathrm{~mA} \end{aligned}$	-	-	0.4	V	
Output "L" voltage	Volı	${ }^{12} \mathrm{C}$ current outputs	$\begin{aligned} & \mathrm{V} \mathrm{cc}=4.5 \mathrm{~V}, \\ & \mathrm{lot}=3.0 \mathrm{~mA} \end{aligned}$	-	-	0.4	V	
Input leak current	IIL	-	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{ss}}<\mathrm{V}_{\mathrm{I}}<\mathrm{V}_{\mathrm{cc}} \end{aligned}$	-1	-	+1	$\mu \mathrm{A}$	
Pull-up resistance	Rup	P00 to P07, P10 to P17, P20 to P25, P30 to P37, RST	-	25	50	100	$\mathrm{k} \Omega$	
Pull-down resistance	Roown	MD2	-	25	50	100	$\mathrm{k} \Omega$	Except Flash memory devices
Power supply current	Icc	Vcc	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V},$ Internal frequency: 24 MHz , At normal operation.	-	48	60	mA	
			$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V},$ Internal frequency : 24 MHz , At writing Flash memory.	-	53	65	mA	Flash memory devices
			$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V},$ Internal frequency: 24 MHz , At erasing Flash memory.	-	58	70	mA	Flash memory devices
	Iccs		$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V},$ Internal frequency : 24 MHz , At Sleep mode.	-	25	35	mA	
	Icts		$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V},$ Internal frequency: 2 MHz , At Main Timer mode	-	0.3	0.8	mA	Devices without "T"-suffix
				-	0.4	1.0	mA	Devices with "T"-suffix
	IctsplL6		$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V},$ Internal frequency : 24 MHz , At PLL Timer mode, external frequency $=4 \mathrm{MHz}$	-	4	7	mA	

(Continued)

MB90350E Series

$\left(\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}, \mathrm{V} \mathrm{cc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{fcP} \leq 24 \mathrm{MHz}, \mathrm{V} s \mathrm{~A}=\mathrm{AV} \mathrm{Ss}=0 \mathrm{~V}\right)$

Parameter	Symbol	Pin	Condition	Value			Unit	Remarks
				Min	Typ	Max		
Power supply current	Iccl	Vcc	$V_{c c}=5.0 \mathrm{~V},$ Internal frequency: 8 kHz , During stopping clock supervisor, At sub clock operation $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-	70	140	$\mu \mathrm{A}$	MB90F351E MB90F352E MB90351E MB90352E MB90F356E MB90F357E MB90356E MB90357E
			$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V},$ Internal frequency: 8 kHz , During operating clock supervisor, At sub clock operation $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-	100	200	$\mu \mathrm{A}$	MB90F356E MB90F357E MB90356E MB90357E
			$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V},$ Internal CR oscillation/ 4 division, At sub clock operation $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-	100	200	$\mu \mathrm{A}$	MB90F356ES MB90F357ES MB90356ES MB90357ES
			$V_{c c}=5.0 \mathrm{~V},$ Internal frequency: 8 kHz , During stopping clock supervisor, At sub clock operation $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-	120	240	$\mu \mathrm{A}$	MB90F351TE MB90F352TE MB90351TE MB90352TE MB90F356TE MB90F357TE MB90356TE MB90357TE
			$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V},$ Internal frequency: 8 kHz , During operating clock supervisor, At sub clock operation $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-	150	300	$\mu \mathrm{A}$	MB90F356TE MB90F357TE MB90356TE MB90357TE
			$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V},$ Internal CR oscillation/ 4 division, At sub clock operation $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-	150	300	$\mu \mathrm{A}$	MB90F356TES MB90F357TES MB90356TES MB90357TES

(Continued)

MB90350E Series

$\left(\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}, \mathrm{V} \mathrm{Cc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{fcP} \leq 24 \mathrm{MHz}, \mathrm{V} s \mathrm{~A}=\mathrm{AV} \mathrm{ss}=0 \mathrm{~V}\right)$

Parameter	Symbol	Pin	Condition	Value			Unit	Remarks
				Min	Typ	Max		
Power supply current	Iccls	Vcc	$V_{c c}=5.0 \mathrm{~V},$ Internal frequency: 8 kHz , During stopping clock supervisor, At sub sleep $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-	20	50	$\mu \mathrm{A}$	MB90F351E MB90F352E MB90351E MB90352E MB90F356E MB90F357E MB90356E MB90357E
			$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V},$ Internal frequency: 8 kHz , During operating clock supervisor, At sub sleep $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-	60	200	$\mu \mathrm{A}$	MB90F356E MB90F357E MB90356E MB90357E
			$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V},$ Internal CR oscillation/ 4 division, At sub sleep $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-	60	200	$\mu \mathrm{A}$	MB90F356ES MB90F357ES MB90356ES MB90357ES
			$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V},$ Internal frequency: 8 kHz , At sub sleep $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-	70	150	$\mu \mathrm{A}$	MB90F351TE MB90F352TE MB90351TE MB90352TE MB90F356TE MB90F357TE MB90356TE MB90357TE
			$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V},$ Internal frequency: 8 kHz , During operating clock supervisor, At sub sleep $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-	110	300	$\mu \mathrm{A}$	MB90F356TE MB90F357TE MB90356TE MB90357TE
			$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V},$ Internal CR oscillation/ 4 division, At sub sleep $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-	110	300	$\mu \mathrm{A}$	MB90F356TES MB90F357TES MB90356TES MB90357TES

(Continued)

MB90350E Series

(Continued)
$\left(\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}, \mathrm{V} \mathrm{cc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{fcP} \leq 24 \mathrm{MHz}, \mathrm{V} \mathrm{ss}=\mathrm{AV} \mathrm{ss}=0 \mathrm{~V}\right)$

Parameter	Symbol	Pin	Condition	Value			Unit	Remarks
				Min	Typ	Max		
Power supply current	Icct	Vcc	$V_{c c}=5.0 \mathrm{~V},$ Internal frequency: 8 kHz , During stopping clock supervisor, At watch mode $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-	10	35	$\mu \mathrm{A}$	MB90F351E MB90F352E MB90351E MB90352E MB90F356E MB90F357E MB90356E MB90357E
			$V_{c c}=5.0 \mathrm{~V},$ Internal frequency: 8 kHz , During operating clock supervisor, At watch mode $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-	25	150	$\mu \mathrm{A}$	MB90F356E MB90F357E MB90356E MB90357E
			$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V},$ Internal CR oscillation/ 4 division, At watch mode $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-	25	150	$\mu \mathrm{A}$	MB90F356ES MB90F357ES MB90356ES MB90357ES
			$V_{\mathrm{cc}}=5.0 \mathrm{~V},$ Internal frequency: 8 kHz , During stopping clock supervisor, At watch mode $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-	60	140	$\mu \mathrm{A}$	MB90F351TE MB90F352TE MB90351TE MB90352TE MB90F356TE MB90F357TE MB90356TE MB90357TE
			$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V},$ Internal frequency: 8 kHz , During operating clock supervisor, At watch mode $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-	80	250	$\mu \mathrm{A}$	MB90F356TE MB90F357TE MB90356TE MB90357TE
			$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V},$ Internal CR oscillation/ 4 division, At watch mode $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-	80	250	$\mu \mathrm{A}$	MB90F356TES MB90F357TES MB90356TES MB90357TES
	Іссн		$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V},$ At stop mode,	-	7	25	$\mu \mathrm{A}$	Devices without "T"-suffix
			$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-	60	130	$\mu \mathrm{A}$	Devices with "T"-suffix
Input capacity	Cin	Other than $\mathrm{C}, \mathrm{AVcc}, A V_{\mathrm{ss}}$, AVRH, Vcc, Vss	-	-	5	15	pF	

MB90350E Series

4. AC Characteristics

(1) Clock Timing
$\left(\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+125^{\circ} \mathrm{C}, \mathrm{V} \mathrm{cc}=5.0 \mathrm{~V} \pm 10 \%$, fcp $\leq 24 \mathrm{MHz}, \mathrm{V}_{\mathrm{ss}}=\mathrm{AV}$ ss $=0 \mathrm{~V}$)

Parameter	Symbol	Pin	Value			Unit	Remarks
			Min	Typ	Max		
Clock frequency	fc	X0, X1	3	-	16	MHz	1/2 (at PLL stop) When using an oscillation circuit
			4	-	16	MHz	1 multiplied PLL When using an oscillation circuit
			4	-	12	MHz	2 multiplied PLL When using an oscillation circuit
			4	-	8	MHz	3 multiplied PLL When using an oscillation circuit
			4	-	6	MHz	4 multiplied PLL When using an oscillation circuit
			-	-	4	MHz	6 multiplied PLL When using an oscillation circuit
		X0	3	-	24	MHz	1/2 (at PLL stop), When using an external clock
			4	-	24	MHz	1 multiplied PLL When using an external clock
			4	-	12	MHz	2 multiplied PLL When using an external clock
			4	-	8	MHz	3 multiplied PLL When using an external clock
			4	-	6	MHz	4 multiplied PLL When using an external clock
			-	-	4	MHz	6 multiplied PLL When using an external clock
	fcı	X0A, X1A	-	32.768	100	kHz	When using sub clock
Clock cycle time	toyL	$\mathrm{X0}, \mathrm{X} 1$	62.5	-	333	ns	When using an oscillation circuit
		X0	41.67	-	333	ns	When using an external clock
	toyll	X0A, X1A	10	30.5	-	$\mu \mathrm{s}$	
Input clock pulse width	Pwh, PwL	X0	10	-	-	ns	Duty ratio should be about 30% to 70%.
	Pwhe, PwL	XOA	5	15.2	-	$\mu \mathrm{s}$	
Input clock rise and fall time	tcr, tcF	X0	-	-	5	ns	When using an external clock

(Continued)

MB90350E Series

(Continued)
$\left(\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}, \mathrm{V} \mathrm{Cc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{fcP} \leq 24 \mathrm{MHz}, \mathrm{V} \mathrm{Ss}=\mathrm{AV} \mathrm{Ss}=0 \mathrm{~V}\right)$

Parameter	Symbol	Pin	Value			Unit	Remarks
			Min	Typ	Max		
Internal operating clock frequency (machine clock)	fCP	-	1.5	-	24	MHz	When using main clock
	f.PL	-	-	8.192	50	kHz	When using sub clock
Internal operating clock cycle time (machine clock)	tcp	-	41.67	-	666	ns	When using main clock
	tcpl	-	20	122.1	-	$\mu \mathrm{s}$	When using sub clock

- Clock Timing

MB90350E Series

- PLL guaranteed operation range

* : When using crystal oscillator or ceramic oscillator, the maximum clock frequency is 16 MHz .

External clock frequency and internal operation clock frequency

MB90350E Series

(2) Reset Standby Input
$\left(\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}, \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{fcP} \leq 24 \mathrm{MHz}, \mathrm{V}_{\mathrm{ss}}=\mathrm{AV} \mathrm{Vs}=0 \mathrm{~V}\right)$

Parameter	Symbol	Pin	Value		Unit	Remarks
			Min	Max		
Reset input time	trsti	$\overline{\mathrm{RST}}$	500	-	ns	Under normal operation
			Oscillation time of oscillator* $+100 \mu \mathrm{~s}$	-	$\mu \mathrm{s}$	In Stop mode, Sub Clock mode, Sub Sleep mode and Watch mode
			100	-	$\mu \mathrm{s}$	In Main timer mode and PLL timer mode

* : Oscillation time of oscillator is the time that the amplitude reaches 90%. In the crystal oscillator, the oscillation time is between several ms to tens of ms . In ceramic oscillators, the oscillation time is between hundreds of $\mu \mathrm{s}$ to several ms . With an external clock, the oscillation time is 0 ms .

Under normal operation:

In Stop mode, Sub Clock mode, Sub Sleep mode and, Watch mode:

MB90350E Series

(3) Power On Reset
$\left(\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+125^{\circ} \mathrm{C}, \mathrm{V} \mathrm{cc}=5.0 \mathrm{~V} \pm 10 \%$, $\left.\mathrm{fcP} \leq 24 \mathrm{MHz}, \mathrm{V} \mathrm{ss}=\mathrm{AV} \mathrm{Ss}=0 \mathrm{~V}\right)$

Parameter	Symbol	Pin	Condition	Value		Unit	Remarks
				Min	Max		
Power on rise time	t_{R}	Vcc	-	0.05	30	ms	
Power off time	toff	Vcc		1	-	ms	Waiting time until power-on

Note : If you change the power supply voltage too rapidly, a power on reset may occur. We recommend that you start up smoothly by restraining voltages when changing the power supply voltage during operation, as shown in the figure below. Perform while not using the PLL clock. However, if voltage drops are within $1 \mathrm{~V} / \mathrm{s}$, you can operate while using the PLL clock.

(4) Clock Output Timing
$\left(\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+105^{\circ} \mathrm{C}, \mathrm{V} \mathrm{Cc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{Vss}=0.0 \mathrm{~V}, \mathrm{fcP} \leq 24 \mathrm{MHz}\right)$

Parameter	Symbol	Pin	Condition	Value		Unit	Remarks
				Min	Max		
Cycle time	tcre	CLK	-	62.5	-	ns	$\mathrm{f}_{\mathrm{CP}}=16 \mathrm{MHz}$
				41.76	-	ns	$\mathrm{fcP}=24 \mathrm{MHz}$
CLK $\uparrow \rightarrow$ CLK \downarrow	tchcl	CLK	-	20	-	ns	$\mathrm{fcP}=16 \mathrm{MHz}$
				13	-	ns	$\mathrm{f}_{\mathrm{CP}}=24 \mathrm{MHz}$

MB90350E Series

(5) Bus Timing (Read)

$$
\left(\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+105^{\circ} \mathrm{C}, \mathrm{~V} \mathrm{cc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V} \mathrm{ss}=0.0 \mathrm{~V}, \mathrm{fcP} \leq 24 \mathrm{MHz}\right)
$$

Parameter	Symbol	Pin	Condition	Value		Unit
				Min	Max	
ALE pulse width	tLHLL	ALE	-	tcp/2-10	-	ns
Valid address \rightarrow ALE \downarrow time	tavll	ALE, A21 to A16, AD15 to AD00		tcp/2-20	-	ns
ALE $\downarrow \rightarrow$ Address valid time	tllax	ALE, AD15 to AD00		tcp/2-15	-	ns
Valid address $\rightarrow \overline{\mathrm{RD}} \downarrow$ time	$t_{\text {AVRL }}$	A21 to A16, AD15 to AD00, $\overline{\mathrm{RD}}$		tcp - 15	-	ns
Valid address \rightarrow Valid data input	tavdv	A21 to A16, AD15 to AD00		-	$5 \mathrm{tcp} / 2-60$	ns
$\overline{\mathrm{RD}}$ pulse width	trLRH	$\overline{\mathrm{RD}}$		$\left(n^{*}+3 / 2\right)$ tcp -20	-	ns
$\overline{\overline{R D}} \downarrow \rightarrow$ Valid data input	trLdv	$\overline{\mathrm{RD}}, \mathrm{AD} 15$ to AD00		-	$\left(n^{*}+3 / 2\right)$ tcp -50	ns
$\overline{\mathrm{RD}} \uparrow \rightarrow$ Data hold time	trhdx	$\overline{\mathrm{RD}}, \mathrm{AD} 15$ to AD00		0	-	ns
$\overline{\mathrm{RD}} \uparrow \rightarrow \mathrm{ALE} \uparrow$ time	trhLH	RD, ALE		tcp/2-15	-	ns
$\overline{\mathrm{RD}} \uparrow \rightarrow$ Address valid time	trhax	$\overline{\mathrm{RD}}, \mathrm{A} 21$ to A16		tcp/2-10	-	ns
Valid address \rightarrow CLK \uparrow time	tavch	A21 to A16, AD15 to AD00, CLK		tcp/2-16	-	ns
$\overline{\mathrm{RD}} \downarrow \rightarrow$ CLK \uparrow time	trlch	$\overline{\mathrm{RD}}, \mathrm{CLK}$		tcp/2-15	-	ns
ALE $\downarrow \rightarrow \overline{\mathrm{RD}} \downarrow$ time	tLLRL	ALE, $\overline{\mathrm{RD}}$		tcp/2-15	-	ns

* : Number of ready cycles

MB90350E Series

MB90350E Series

(6) Bus Timing (Write)

$$
\left(\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+105^{\circ} \mathrm{C}, \mathrm{~V} \mathrm{cc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V} \mathrm{ss}=0.0 \mathrm{~V}, \mathrm{fcP} \leq 24 \mathrm{MHz}\right)
$$

Parameter	Symbol	Pin	Condition	Value		Unit
				Min	Max	
Valid address $\rightarrow \overline{\mathrm{WR}} \downarrow$ time	$t_{\text {Avwl }}$	A21 to A16, AD15 to AD00, $\overline{W R}$	-	tcp-15	-	ns
$\overline{\text { WR pulse width }}$	twewh	$\overline{\mathrm{WR}}$		$\left(\mathrm{n}^{*}+3 / 2\right) \mathrm{tcp}-20$	-	ns
Valid data output $\rightarrow \overline{\mathrm{WR}} \uparrow$ time	tovwh	$\frac{\mathrm{AD} 15}{\mathrm{WR}} \text { to AD00, }$		$\left(n^{*}+3 / 2\right) t \mathrm{tcp}-20$	-	ns
$\overline{\mathrm{WR}} \uparrow \rightarrow$ Data hold time	twhdx	$\frac{\mathrm{AD} 15}{\mathrm{WR}} \text { to AD00, }$		15	-	ns
$\overline{\mathrm{WR}} \uparrow \rightarrow$ Address valid time	twhax	$\frac{A 21}{\mathrm{WR}} \text { to } \mathrm{A} 16,$		tcp/2-10	-	ns
$\overline{\mathrm{WR}} \uparrow \rightarrow$ ALE \uparrow time	twhin	$\overline{\text { WR, ALE }}$		tcp/2-15	-	ns
$\overline{\mathrm{WR}} \downarrow \rightarrow$ CLK \uparrow time	twlch	$\overline{\mathrm{WR}}$, CLK		tcp/2-15	-	ns

*: Number of ready cycles

For 1 cycle of auto-ready

MB90350E Series

(7) Ready Input Timing

Parameter	Symbol	Pin	Condition	Value		Units	Remarks
				Min	Max		
RDY set-up time	tryms	RDY	-	45	-	ns	$\mathrm{fcp}=16 \mathrm{MHz}$
				32	-	ns	$\mathrm{fcP}=24 \mathrm{MHz}$
RDY hold time	tryнH	RDY		0	-	ns	

Note : If the RDY set-up time is insufficient, use the auto-ready function.

MB90350E Series

(8) Hold Timing

$$
\left(\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+105^{\circ} \mathrm{C}, \mathrm{~V} \mathrm{Cc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{Vss}=0.0 \mathrm{~V}, \mathrm{fcp} \leq 24 \mathrm{MHz}\right)
$$

Parameter	Symbol	Pin	Condition	Value		Units
				Min	Max	
Pin floating $\rightarrow \overline{\mathrm{HAK}} \downarrow$ time	txhaL	$\overline{\mathrm{HAK}}$	-	30	tcp	ns
$\overline{\text { HAK }} \uparrow$ time \rightarrow Pin valid time	thatv	HAK		tcp	2 tcp	ns

Note : There is more than 1 machine cycle from when HRQ pin reads in until the $\overline{\mathrm{HAK}}$ is changed.

MB90350E Series

(9) UART $2 / 3$
$\left(\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}, \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{fcp} \leq 24 \mathrm{MHz}, \mathrm{Vss}=\mathrm{AV} \mathrm{Ss}=0 \mathrm{~V}\right)$

Parameter	Symbol	Pin	Condition	Value		Unit
				Min	Max	
Serial clock cycle time	tscrc	SCK2, SCK3	Internal shift clock mode output pins are $\mathrm{C}_{\llcorner }=80 \mathrm{pF}+1 \mathrm{TTL}$	8 tcp*	-	ns
SCK $\downarrow \rightarrow$ SOT delay time	tslov	SCK2, SCK3, SOT2, SOT3		-80	+80	ns
Valid SIN \rightarrow SCK \uparrow	tivsh	$\begin{gathered} \text { SCK2, SCK3, } \\ \text { SIN2, SIN3 } \end{gathered}$		100	-	ns
SCK $\uparrow \rightarrow$ Valid SIN hold time	tshlx	SCK2, SCK3, SIN2, SIN3		60	-	ns
Serial clock "H" pulse width	tshst	SCK2, SCK3	External shift clock mode output pins are $\mathrm{C} L=80 \mathrm{pF}+1 \mathrm{TTL}$	4 tcp	-	ns
Serial clock "L" pulse width	tslsh	SCK2, SCK3		4 tcp	-	ns
SCK $\downarrow \rightarrow$ SOT delay time	tsov	SCK2, SCK3, SOT2, SOT3		-	150	ns
Valid SIN \rightarrow SCK \uparrow	tivsh	SCK2, SCK3, SIN2, SIN3		60	-	ns
SCK $\uparrow \rightarrow$ Valid SIN hold time	tshix	SCK2, SCK3, SIN2, SIN3		60	-	ns

*: Refer to " (1) Clock timing" rating for tcp (internal operating clock cycle time).
Notes : • AC characteristic in CLK synchronous mode.

- C_{L} is load capacity value of pins when testing.
- Internal Shift Clock Mode

MB90350E Series

- External Shift Clock Mode

(10) Trigger Input Timing

Parameter	Symbol	Pin	Condition	Value		Unit
				Min	Max	
Input pulse width	ttrah ttrgal	INT8 to INT15, INT9R to INT11R, ADTG	-	5 tcp	-	ns

INT8 to INT15, INT9R to INT11R, ADTG

MB90350E Series

(11) Timer Related Resource Input Timing

Parameter	Symbol	Pin	Condition	Value		Unit
				Min	Max	
Input pulse width	tтiwh	TIN1, TIN3,IN0, IN1, IN4 to IN7	-	4 tcp	-	ns
	ttiwl					

TIN1, TIN3 IN0, IN1, IN4 to IN7

(12) Timer Related Resource Output Timing
$\left(\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}, \mathrm{V} \mathrm{cc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{fcP} \leq 24 \mathrm{MHz}, \mathrm{V}_{\mathrm{ss}}=\mathrm{AV} \mathrm{Vs}=0 \mathrm{~V}\right)$

Parameter	Symbol	Pin	Condition	Value		Unit
				Max		
CLK $\uparrow \rightarrow$ Tout change time	tтo	TOT1, TOT3, PPG4, PPG6, PPG8 to PPGF	-	30	-	ns

MB90350E Series

(13) $I^{2} C$ Timing
$\left(\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+125^{\circ} \mathrm{C}, \mathrm{V} \mathrm{Cc}=\mathrm{AV} \mathrm{cc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{f}_{\mathrm{cP}} \leq 24 \mathrm{MHz}, \mathrm{V}_{\mathrm{ss}}=\mathrm{AV}$ ss $\left.=0 \mathrm{~V}\right)$

Parameter	Symbol	Condition	Standard-mode		Fast-mode*4		Unit
			Min	Max	Min	Max	
SCL clock frequency	fscl	$\begin{aligned} & \mathrm{R}=1.7 \mathrm{k} \Omega, \\ & \mathrm{C}=50 \mathrm{pF}^{* 1} \end{aligned}$	0	100	0	400	kHz
Hold time for (repeated) START condition SDA $\downarrow \rightarrow$ SCL \downarrow	thdsta		4.0	-	0.6	-	$\mu \mathrm{s}$
"L" width of the SCL clock	tıow		4.7	-	1.3	-	$\mu \mathrm{s}$
"H" width of the SCL clock	thigh		4.0	-	0.6	-	$\mu \mathrm{s}$
Set-up time for a repeated START condition SCL $\uparrow \rightarrow$ SDA \downarrow	tsusta		4.7	-	0.6	-	$\mu \mathrm{s}$
Data hold time $\text { SCL } \downarrow \rightarrow \text { SDA } \downarrow \uparrow$	thdiat		0	$3.45{ }^{* 2}$	0	0.9*3	$\mu \mathrm{s}$
Data set-up time SDA $\downarrow \uparrow \rightarrow$ SCL \uparrow	tsudat		250*5	-	100*5	-	ns
Set-up time for STOP condition SCL $\uparrow \rightarrow$ SDA \uparrow	tsusto		4.0	-	0.6	-	$\mu \mathrm{s}$
Bus free time between STOP condition and START condition	trus		4.7	-	1.3	-	$\mu \mathrm{s}$

*1: R,C : Pull-up resistor and load capacitor of the SCL and SDA lines.
*2 : The maximum thddat has to meet at least that the device does not exceed the "L" width (tlow) of the SCL signal.
*3 : A Fast-mode $\mathrm{I}^{2} \mathrm{C}$-bus device can be used in a Standard-mode $\mathrm{I}^{2} \mathrm{C}$-bus system, but the requirement tsudat ≥ 250 ns must be met.
*4: For use at over 100 kHz , set the machine clock to at least 6 MHz .
*5 : Refer to "• Note of SDA, SCL set-up time".

- Note of SDA, SCL set-up time

MB90350E Series

Note : The rating of the input data set-up time in the device connected to the bus cannot be satisfied depending on the load capacitance or pull-up resistor.
Be sure to adjust the pull-up resistor of SDA and SCL if the rating of the input data set-up time cannot be satisfied.

- Timing definition

MB90350E Series

5. A/D Converter

Parameter	Symbol	Pin	Value			Unit	Remarks
			Min	Typ	Max		
Resolution	-	-	-	-	10	bit	
Total error	-	-	-	-	± 3.0	LSB	
Nonlinearity error	-	-	-	-	± 2.5	LSB	
Differential nonlinearity error	-	-	-	-	± 1.9	LSB	
Zero reading voltage	Vot	ANO to AN14	AVss - 1.5	AV ss +0.5	AV ss +2.5	V	
Full scale reading voltage	$V_{\text {fst }}$	ANO to AN14	AVRH - 3.5	AVRH-1.5	AVRH + 0.5	V	
Compare time	-	-	1.0	-	16500	$\mu \mathrm{s}$	$4.5 \mathrm{~V} \leq \mathrm{AV}$ cc $\leq 5.5 \mathrm{~V}$
			2.0				$4.0 \mathrm{~V} \leq \mathrm{AV}_{c c}<4.5 \mathrm{~V}$
Sampling time	-	-	0.5	-	∞	$\mu \mathrm{s}$	$4.5 \mathrm{~V} \leq \mathrm{AV} \mathrm{cc}^{5} 5.5 \mathrm{~V}$
			1.2				$4.0 \mathrm{~V} \leq \mathrm{AV}_{\mathrm{cc}}<4.5 \mathrm{~V}$
Analog port input current	lain	ANO to AN14	-0.3	-	+ 0.3	$\mu \mathrm{A}$	
Analog input voltage range	Vain	ANO to AN14	AVss	-	AVRH	V	
Reference voltage range	-	AVRH	AVss +2.7	-	AVcc	V	
Power supply current	IA	AV ${ }_{\text {cc }}$	-	3.5	7.5	mA	
	ІА	AV ${ }_{\text {cc }}$	-	-	5	$\mu \mathrm{A}$	*
Reference voltage supply current	IR	AVRH	-	600	900	$\mu \mathrm{A}$	
	IRH	AVRH	-	-	5	$\mu \mathrm{A}$	*
Offset between channels	-	ANO to AN14	-	-	4	LSB	

*: If A / D converter is not operating, a current when CPU is stopped is applicable $(\mathrm{Vcc}=\mathrm{AV} \mathrm{Cc}=\mathrm{AVRH}=5.0 \mathrm{~V})$.

MB90350E Series

Notes on A/D Converter Section

- About the external impedance of the analog input and its sampling time

A/D converter with sample and hold circuit. If the external impedance is too high to keep sufficient sampling time, the analog voltage charged to the internal sample and hold capacitor is insufficient, adversely affecting A/D conversion precision. Therefore to satisfy the A/D conversion precision standard, consider the relationship between the external impedance and minimum sampling time and either adjust the register value and operating frequency or decrease the external impedance so that the sampling time is longer than the minimum value. Also if the sampling time cannot be sufficient, connect a capacitor of about $0.1 \mu \mathrm{~F}$ to the analog input pin.

- Analog input equivalence circuit

MB90F351E(S), MB90F352E(S), MB90F356E(S), MB90F357E(S), MB90F351TE(S), MB90F352TE(S),MB90F356TE(S), MB90F357TE(S)

$$
\begin{array}{ccc}
& \mathrm{R} & \mathrm{C} \\
4.5 \mathrm{~V} \leq \mathrm{AV}_{\mathrm{CC}} \leq 5.5 \mathrm{~V} & 2.0 \mathrm{k} \Omega \text { (Max) } & 16.0 \mathrm{pF} \text { (Max) } \\
4.0 \mathrm{~V} \leq \mathrm{AV}_{\mathrm{CC}} \leq 4.5 \mathrm{~V} & 8.2 \mathrm{k} \Omega \text { (Max) } & 16.0 \mathrm{pF} \text { (Max) }
\end{array}
$$

MB90V340E-101/102/103/104,
MB90351E(S), MB90352E(S),MB90356E(S), MB90357E(S), MB90351TE(S), MB90352TE(S),MB90356TE(S), MB90357TE(S)

	R	C
$4.5 \mathrm{~V} \leq \mathrm{AV}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$	$2.0 \mathrm{k} \Omega$ (Max)	14.4 pF (Max)
$4.0 \mathrm{~V} \leq \mathrm{AV}_{\mathrm{CC}} \leq 4.5 \mathrm{~V}$	$8.2 \mathrm{k} \Omega$ (Max)	14.4 pF (Max)

Note: The value is reference value.

MB90350E Series

- Flash memory device

- MASK ROM device
- Relation between External impedance and minimum sampling time
(MB90V340E-101/102/103/104,
MB90351E(S), MB90352E(S), MB90356E(S), MB90357E(S),
MB90351TE(S), MB90352TE(S), MB90356TE(S), MB90357TE(S))
[External impedance $=0 \mathrm{k} \Omega$ to $100 \mathrm{k} \Omega$]
$4.5 \mathrm{~V} \leq \mathrm{AV}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$

[External impedance $=0 \mathrm{k} \Omega$ to $20 \mathrm{k} \Omega$]

- About the error

Values of relative errors grow larger, as $\mid A V R H-A V$ ssl becomes smaller.

MB90350E Series

6. Definition of A/D Converter Terms

Resolution : Analog variation that is recognized by an A/D converter.
Non linearity : Deviation between a line across zero-transition line ("00 00000000 " $\leftarrow \rightarrow$ "00 00000001 ") error and full-scale transition line ("11 11111110" $\leftarrow \rightarrow$ "11 11111111") and actual conversion characteristics.
Differential : Deviation of input voltage, which is required for changing output code by 1 LSB, from an ideal linearity error
Total error value.
: Difference between an actual value and a theoretical value. A total error includes zero transition error, full-scale transition error, and linear error.

(Continued)

MB90350E Series

(Continued)

MB90350E Series

7. Flash Memory Program/Erase Characteristics

- Dual Operation Flash Memory

Parameter	Conditions	Value			Unit	Remarks
		Min	Typ	Max		
Sector erase time (4 Kbytes sector)	$\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{cc}}=5.0 \mathrm{~V} \end{aligned}$	-	0.2	0.5	s	Excludes programming prior to erasure
Sector erase time (16 Kbytes sector)		-	0.5	7.5	s	Excludes programming prior to erasure
Chip erase time		-	4.6	-	s	Excludes programming prior to erasure
Word (16-bit width) programming time		-	64	3600	$\mu \mathrm{s}$	Except for the overhead time of the system level
Program/Erase cycle	-	10000	-	-	cycle	
Flash memory Data Retention Time	$\begin{gathered} \text { Average } \\ \mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C} \end{gathered}$	20	-	-	year	*

*: Corresponding value comes from the technology reliability evaluation result.
(Using Arrhenius equation to translate high temperature measurements test result into normalized value at $+85^{\circ} \mathrm{C}$)

MB90350E Series

ORDERING INFORMATION

Part number	Package	Remarks
MB90F351EPMC	64-pin plastic LQFP FPT-64P-M23 $12.0 \mathrm{~mm} \square, 0.65 \mathrm{~mm}$ pitch	Dual operation Flash memory products (64 Kbytes)
MB90F351ESPMC		
MB90F351TEPMC		
MB90F351TESPMC		
MB90F356EPMC		
MB90F356ESPMC		
MB90F356TEPMC		
MB90F356TESPMC		
MB90F352EPMC	64-pin plastic LQFP FPT-64P-M23 $12.0 \mathrm{~mm} \square, 0.65 \mathrm{~mm}$ pitch	Dual operation Flash memory products (128 Kbytes)
MB90F352ESPMC		
MB90F352TEPMC		
MB90F352TESPMC		
MB90F357EPMC		
MB90F357ESPMC		
MB90F357TEPMC		
MB90F357TESPMC		
MB90351EPMC	64-pin plastic LQFP FPT-64P-M23 12.0 mm \square , 0.65 mm pitch	MASK ROM products (64 Kbytes)
MB90351ESPMC		
MB90351TEPMC		
MB90351TESPMC		
MB90356EPMC		
MB90356ESPMC		
MB90356TEPMC		
MB90356TESPMC		
MB90352EPMC	64-pin plastic LQFP FPT-64P-M23 12.0 mm \square $\square, 0.65 \mathrm{~mm}$ pitch	MASK ROM products (128 Kbytes)
MB90352ESPMC		
MB90352TEPMC		
MB90352TESPMC		
MB90357EPMC		
MB90357ESPMC		
MB90357TEPMC		
MB90357TESPMC		

(Continued)

MB90350E Series

(Continued)

Part number	Package	Remarks
MB90F351EPMC1	64-pin plastic LQFP FPT-64P-M24 $10.0 \mathrm{~mm} \square, 0.50 \mathrm{~mm}$ pitch	Dual operation Flash memory products (64 Kbytes)
MB90F351ESPMC1		
MB90F351TEPMC1		
MB90F351TESPMC1		
MB90F356EPMC1		
MB90F356ESPMC1		
MB90F356TEPMC1		
MB90F356TESPMC1		
MB90F352EPMC1	64-pin plastic LQFP FPT-64P-M24 $10.0 \mathrm{~mm} \square, 0.50 \mathrm{~mm}$ pitch	Dual operation Flash memory products (128 Kbytes)
MB90F352ESPMC1		
MB90F352TEPMC1		
MB90F352TESPMC1		
MB90F357EPMC1		
MB90F357ESPMC1		
MB90F357TEPMC1		
MB90F357TESPMC1		
MB90351EPMC1	64-pin plastic LQFP FPT-64P-M24 $10.0 \mathrm{~mm} \square, 0.50 \mathrm{~mm}$ pitch	MASK ROM products (64 Kbytes)
MB90351ESPMC1		
MB90351TEPMC1		
MB90351TESPMC1		
MB90356EPMC1		
MB90356ESPMC1		
MB90356TEPMC1		
MB90356TESPMC1		
MB90352EPMC1	64-pin plastic LQFP FPT-64P-M24 $10.0 \mathrm{~mm} \square, 0.50 \mathrm{~mm}$ pitch	MASK ROM products (128 Kbytes)
MB90352ESPMC1		
MB90352TEPMC1		
MB90352TESPMC1		
MB90357EPMC1		
MB90357ESPMC1		
MB90357TEPMC1		
MB90357TESPMC1		
MB90V340E-101	299-pin ceramic PGA PGA-299C-A01	Device for evaluation
MB90V340E-102		
MB90V340E-103		
MB90V340E-104		

MB90350E Series

PACKAGE DIMENSIONS

64-pin plastic LQFP	Lead pitch	0.65 mm
Package width \times package length	$12.0 \times 12.0 \mathrm{~mm}$	
	Lead shape	Gullwing
Sealing method	Plastic mold	
Mounting height	1.70 mm MAX	
Code (Reference)	P-LFQFP64-12×12-0.65	

Please confirm the latest Package dimension by following URL.
http://edevice.fujitsu.com/fj/DATASHEET/ef-ovpklv.html
(Continued)

MB90350E Series

(Continued)

Please confirm the latest Package dimension by following URL.
http://edevice.fujitsu.com/fj/DATASHEET/ef-ovpklv.html

MB90350E Series

■ MAIN CHANGES IN THIS EDITION

Page	Section	Change Results
-	-	Added the following part numbers. MB90356E(S)/TE(S),MB90F356E(S)/TE(S), MB90357E(S)/TE(S), MB90F357E(S)/TE(S), MB90V340E-103/104)
1	-DESCRIPTION	Added a description of the "Clock supervisor".
2	-	Added a description of the "Clock supervisor".
13	- PACKAGES AND PRODUCT CORRESPONDENCE	Changed the description of "FPT-64P-M24" as follows:
		Removed the table footnote "* : This device is under development."
27	■HANDLING DEVICES	Added section "19.Internal CR oscillation circuit".
40	- I/O MAP	Added the "Clock supervisor Control Register".
56	ELECTRICAL CHARACTERISTICS 3. DC Characteristics	Added the ratings for the "Clock supervisor" to the "lccl" section of the power supply current ratings.
57		Added the ratings for the "Clock supervisor" to the "lccls" section of the power supply current ratings.
58		Added the ratings for the "Clock supervisor" to the "Ісст" section of the power supply current ratings.
81	■ORDERING INFORMATION	Removed the footnote asterisks from the "Dual operation Flash memory products*" and "MASK ROM products*" of the "FPT-64P-M24" package.
		Removed the table footnote "*: This device is under development."

The vertical lines marked in the left side of the page show the changes.

MB90350E Series

The information for microcontroller supports is shown in the following homepage. http://www.fujitsu.com/global/services/microelectronics/product/micom/support/index.html

FUJITSU LIMITED

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.
The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of Fujitsu semiconductor device; Fujitsu does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information. Fujitsu assumes no liability for any damages whatsoever arising out of the use of the information.
Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of Fujitsu or any third party or does Fujitsu warrant non-infringement of any third-party's intellectual property right or other right by using such information. Fujitsu assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein.
The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).
Please note that Fujitsu will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.
Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.
If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.
The company names and brand names herein are the trademarks or registered trademarks of their respective owners.

[^0]: *: For the I/O circuit type, refer to "■ I/O CIRCUIT TYPE".

